
CSci 490, Spring 2005, Assignment 1

This assignment, worth 40 points, is due at 3pm, Friday, January 28. Submit it by attaching your modified
files to an e-mail to cburch@cburch.com.

This assignment involves writing two important pieces to a rather sophisticated Java program for walking
through a building. This program employs the ray casting technique for rendering the walls; this is the
basic technique pioneered by Wolfenstein 3D, which was enhanced in Doom and several subsequent game
engines.

Like Wolfenstein 3D, our engine is based on some important limitations: We require the floor to be level
(no stairs); all surfaces must be vertical; all surfaces must have the same height; and the user must always
look straight ahead.1 These assumptions render the vertical dimension irrelevant, flattening the 3D space
into a 2D space.

You can download the supporting files from the class Web page. The files include:

• several Java source code files, with some key methods in the View and Cylinder classes left undefined.
You’ll implement these methods for this assignment.

• documentation for these classes, as generated by javadoc.

• two “world” data files, simple.map and pillars.map, describing worlds you can use for testing
your program. You can of course create your own worlds.

• several texture files, beginning with “txt-” and ending in “.gif” or “.jpg.” These files are refer-
enced in the world files.

• a JAR file (tour.jar) containing a compiled version of the completed program. You can use this
to see how your program will end up working. To run it, you will need to include the world file as a
command line argument.

java -jar tour.jar pillars.map

The main window displays a first-person view from your current location. The inset in the upper right
maps the world including your current position. The numbers in the lower left indicate your current
position and orientation.

Note that you can move using the arrow keys. The left and right arrow keys rotate your view, and the
up and down keys move you forward and backward.

The program works as distributed, but the first-person view will be absent. To compile and run your
program, type:

java Main simple.map

Part I (25 pts)

Complete the View class’s fillPixels method, which implements the fundamental ray casting tech-
nique. You’ll find the classes of Table 1 useful in completing this. With the method complete, you should be
able to see a first-person view of simple.map. (The pillars.map file is intended for testing Part II.)

The fillPixels method takes four parameters. The first, a User object, gives information about
the user’s context. The second, an int[], is an array of pixels that should be filled with an image of
the user’s view. The third and fourth parameters give the dimensions of this image. The pixels pa-
rameter is one-dimensional array that includes a single int for each pixel of the two-dimensional image,
with entry pixels[0] being the top left pixel, pixels[width] being the pixel just below it, and

1The Wolfenstein 3D engine is even more limited: It also requires all surfaces to be unit cubes. Also, Wolfenstein 3D lights all
surfaces uniformly, whereas your engine will be much more sophisticated in how it lights surfaces.



User Represents the user’s location, including a reference to the World
in which the user is located.

World Represents all the information about the world map.
Surface Represents a single vertical surface in the world. At present, there

are two complete implementations of this interface, LatWall (east-
west walls) and LongWall (north-south walls). You’ll complete the
Cylinder implementation in Part II.

Ray Represents a two-dimensional ray, with a starting point (x, y) and
a direction (dx, dy).

Intersection Represents information about where a ray strikes a surface in the
world.

TextureColumn Represents a vertical strip of a texture.

Table 1: Classes useful for Part I.

pixels[width * height - 1] being the bottom right pixel.2 (In case you’re wondering, though
you don’t need the fact for this assignment, each int represents a color by packing four 8-bit values to-
gether: The highest 8 bits are the pixel’s opaqueness value (you’d always use 0xFF to be entirely opaque),
then the next 8 bits are the pixel’s red value, then its green value, and finally its blue value.)

The ray-casting algorithm works as follows. Each x-coordinate in the image corresponds to a direction
in the 2D plane. The algorithm determines the closest surface in that direction. If it is a distance d away, then
we draw the wall 2/d pixels tall, centered vertically. This way, surfaces that are far away appear smaller than
surfaces that are closer. That this is the correct height to draw the wall can be deduced from the following
diagram.
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Because the triangles are similar, x/1 must equal 1/d. Thus the length of the wall’s image as projected onto
the screen is 2x = 2/d.

For lighting, assume that the only light in the world is a torch that the user holds. This assumption allows
us to simulate real lighting while avoiding shadows (which complicate the process considerably). We will
assume that the walls reflect light diffusely. (That’s a reasonable assumption for rough-hewn rocks, but not
for polished surfaces.) To compute the diffuse reflecion, suppose we have the following.

θ

light source

surface

If the intensity of light from the source strikes the surface with intensity i, and if θ is the angle between the
light ray striking one point on a surface and the surface’s normal at that point, then the intensity of light

2A two-dimensional array of Color objects would be more intuitive. But the Java API for working with images directly uses
this one-dimensional array of ints instead, presumably for performance reasons. We stick with it because doing any conversion
would decrease performance. In other words, don’t blame me for this non-intuitive representation.



reflected at that surface point is
i cos θ

Essentially, this expression says that a surface reflects the most light when the light strikes it head-on. When
it strikes the surface at an angle, then a square foot of light is spread over more than a square foot of surface.3

Computing cos θ is simple: Assuming that that both rays’ directions have length 1, then the the cosine of
the angle between the rays is their directions’ dot product.

You will also want to account for the fact that a torch will light objects farther away more dimly than
objects close up. You can compute this directly imagining the torch at the center of a sphere of radius r.
The torch’s total intensity i will be spread over the sphere’s surface of 4πr2. Thus, a point on the surface
receives i

4πr2 intensity. This model, though, fails to take into account secondary reflections of the light from
other points. In practice, a decay of 1/r rather than 1/r2 generates better images.

Putting these two facts together, we get that the intensity at a surface at distance d, with an angle θ
between the surface normal and the light (which is of intensity i) is

i cos θ

d
.

Remember that cos θ is simply a matter of finding the dot product of the two rays’ directions.
Incidentally, using the same brightness level for the entire vertical stripe of the surface is technically

incorrect, since as we go up and down the wall both θ and d will change. But we will not take this into
account, because using the same intensity simplies computation considerably without causing any perceptual
problems.

Part II (15 pts)

Note: I recommend proceeding to Part II only after you have completed tested Part I.
Implement support for vertical cylinders. In particular, complete the blank methods of the Cylinder

class, getDistanceFrom and getNormal.
Of course, since ray casting allows us to compute in a 2D world, you really only have to worry about

simple circles. For the getDistanceFrommethod, imagine a world like the following.

Suppose the eye is at (ux, uy) and is looking in the direction (∆x,∆y). Thus, a point at distance d along the
ray has the coordinates

(ux + d∆x, uy + d∆y) .

Suppose, moreover, that the cylinder has its center at (cx, cy), and has a radius of r; thus, the points on its
circumference satisfy the equation

(x − cx)2 + (y − cy)
2 = r2 .

You want to find the smallest value of d for which the point at distance d along the ray intersects with the
cylinder’s circumference. This is simply a matter of solving the quadratic equation.4

Enjoy the assignment, and if you have any questions or problems, please don’t hesitate to talk to me!

3Incidentally, this fact is the reason that upper latitudes are colder than lower latitudes. Also, coupled with the earth’s tilt, this
fact is the primary reason that winters are cold.

4If you’ve forgotten, the solution to ax
2
+ bx + c = 0 is

x =
−b ±

√
b2 − 4ac

2a
.


