
Questions 1

Question 2.1–1: (Solution, p 3) Write a truth table tabulating the following circuits' behaviors.

a

b.

Question 2.2–1: (Solution, p 3) Draw a circuit representing each of the following Boolean expressions.

a.
$$x + \overline{x+y}$$

b.
$$\overline{xy + \overline{x}\overline{y}}$$

Question 2.2–2: (Solution, p 3) Draw a truth table corresponding to each of the following expressions.

a.
$$x + \overline{x + y}$$

b.
$$xy + \overline{x+z}$$

Question 2.2–3: (Solution, p 4) What is the *unsimplified* sum-of-products expression for the following truth tables? (Use multiplication for AND, addition for OR.)

a.	\boldsymbol{x}	y	answer
	0	0	1
	0	1	0
	1	0	1
	1	1	0

b.	\boldsymbol{x}	y	answer
	0	0	1
	0	1	1
	1	0	0
	1	1	1

Question 2.2–4: (Solution, p 4) Simplify the following sum-of-products expressions. If it cannot be simplified using the technique from class, you may simply state this fact. Show your work.

a.
$$xy + \bar{x}y + x\bar{y}$$

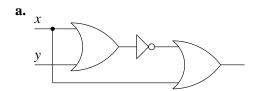
Questions 2

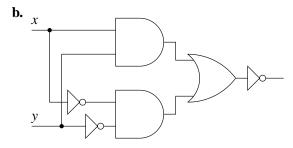
- **b.** $\overline{x}yz + x\overline{y}z + xy\overline{z} + \overline{x}\overline{y}\overline{z}$
- c. $\overline{x}yz + x\overline{y}\overline{z} + x\overline{y}z + xy\overline{z} + xyz$

Question 3.1–1: (Solution, p 4) How many bits do you need to represent seven different values? Nine? Twelve? Thirty?

Question 3.1–2: (Solution, p 4) Perform the following conversions.

- **a.** $1010101_{(2)}$ to octal.
- **b.** $1010101_{(2)}$ to hexadecimal.
- **c.** $1010101_{(2)}$ to decimal.
- **d.** $560_{(8)}$ to decimal.
- **e.** $560_{(8)}$ to binary.
- **f.** $CAB_{(16)}$ to binary.
- **g.** $CAB_{(16)}$ to decimal.
- **h.** $95_{(10)}$ to binary.
- **i.** $95_{(10)}$ to octal.
- **j.** $95_{(10)}$ to hexadecimal.


Solutions 3


Solution 2.1–1: (Question, p 1)

a.	\boldsymbol{x}	y	answer
	0	0	1
	0	1	1
	1	0	0
	1	1	1

b.	\boldsymbol{x}	y	z	answer
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	0

Solution 2.2–1: (Question, p 1)

Solution 2.2–2: (Question, p 1)

a.	\boldsymbol{x}	y	answer
	0	0	1
	0	1	0
	1	0	1
	1	1	1

\boldsymbol{x}	y	z	answer
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

Solutions 4

Solution 2.2–3: (Question, p 1)

a.
$$\bar{x}\bar{y} + x\bar{y}$$

b.
$$\bar{x}\bar{y} + \bar{x}y + xy$$

Solution 2.2–4: (Question, p 1)

a.
$$x+y$$

b. This expression cannot be simplified further using the sum-of-products technique from class.

c.
$$yz + x$$

Solution 3.1–1: (Question, p 2) You need 3 bits for seven values, 4 for nine or twelve, and 5 for thirty values.

Solution 3.1–2: (Question, p 2)

- **a.** 125₍₈₎
- **b.** 55₍₁₆₎
- **c.** 85₍₁₀₎
- **d.** 368₍₁₀₎
- **e.** 101110000₍₂₎
- **f.** 1100 1010 1011₍₂₎
- **g.** 3243₍₁₀₎
- **h.** 1011111₍₂₎
- **i.** 137₍₈₎
- **j.** 5F₍₁₆₎