Jeremy Exley’s sheet; Name: _________________________

Class- a type of object. Object or instance- a “thing” ex. Watch or Chalk . Instance variable- name for piece of data associated w/ object. Instance method- a behavior that an object can perform, things we can ask, “where is the big hand?”. Constructor method- how to initialize a newly created object. class variable-is at a fixed location in memory, there can only be one copy at any given time.

Void-returns nothing useful. Int- returns a value equal to something. Static-a class method.

When running a program that may throw an error a try block is necessary.

Example of using a try block:

IO.println("Type two numbers to divide.");

try { int m = Integer.parseInt(IO.readLine()); //-- Interger.parseInt() used to convert a string to an interger

 int n = Integer.parseInt(IO.readLine());

} catch(NumberFormatException e) {

 IO.println("That's not a number.");

}

try {

 IO.println(m / n); // ERROR: won't compile

} catch(ArithmeticException e) {

 IO.println("I can't divide by zero.");

}

Program used to tell if a number inputted by the user is “Good” or “Bad”

public class Example {

 public static void main(String[] args) {
 try {

 IO.print("Type something. ");

 Integer.parseInt(IO.readString());

 IO.println("good");

 } catch(NumberFormatException e) {

 IO.println("bad");

 }}}
The ArrayList class provides three important methods for putting new data into the ArrayList.

void add(Object obj) -Adds obj at the list's end.

void add(int index, Object obj) -Inserts obj at index index. Objects past index are shifted up.

Object set(int index, Object obj) -Changes object at index index to obj. Returns value previously at index.

example ArrayList holding strings representing the numbers from 1 to 10.

ArrayList count = new ArrayList();

for(int i = 1; i <= 10; i++) count.add("" + i);

Three methods that are useful for accessing information about an ArrayList object.

int size() - Returns the number of elements in the list.

Object get(int index) - Returns the object at index index of the list.

int indexOf(Object obj) - Returns the index of obj in the list, or -1 if not found. It uses the equals() method of obj to determine if two elements are equal.

*The get() method returns an Object, and Java won't automatically cast down the inheritance hierarchy. You need to have an explicit casting operator to make this work. String str = (String) count.get(5);
public class SavingsAccount extends Account {

-A subclass inherits everything from its parent. Everything, that is, except the parent's constructor methods

public SavingsAccount(double inter, double initial) {

 super(initial);

 interest = inter;

-In the parentheses after super is a list of the arguments that should be passed to the appropriate constructor method double to double etc…

-Polymorphism - objects automatically change form as circumstances warrant. Java won't convert down the inheritance hierarchy.

-not sure that it's a SavingsAccount, we could test whether it is first as follows.

 if(bank.getAccount(0) instanceof SavingsAccount) {

 ((SavingsAccount) bank.getAccount(0)).addInterest();

*if class B extends A the only way to access methods within A that were over written in B is by explicitly creating a new variable like so- A a = new A(); otherwise when it is created like so-B b=newB(); the method within A cannot be reached. Even if A a = b; is used b was created as a B() so the methods within A will not be reached.
