Paul Gans’ sheet; Name: _________________________
Exceptions

-A program attempts to divide two numbers, but the second number is zero. (ArithmeticException.)

-A program attempts to call an instance method on an object, but the variable actually holds null. (a NullPointerException.)

-A program attempts to call a nonexistent method. This method may not exist because a class was compiled before the method was added to the code. More often, though, it will occur because the JVM can't find the main() method. (NoSuchMethodError.)

try {

 IO.println("Average: " + (total / num_scores));

 } catch(ArithmeticException e) {

 IO.println("Error: Can't average over zero scores");

 }For example, all exception objects contain a method called getMessage(), which returns a String holding additional information about the exception.

try {

 IO.println("Average: " + (total / num_scores));

} catch(ArithmeticException except) {

 IO.println("Error in averaging: " + except.getMessage());

}

- unchecked exceptions because Java will not insist that they be checked.
-checked exception is Thread.sleep(), which will halt for a number of milliseconds specified as a parameter you have to check it or it won’t run.

Thread.sleep(20); // won't compile: exception not caught
-So what you must do is place the code that uses Thread.sleep() within a try clause, followed by a catch clause to handle an InterruptedException.

try {

 Thread.sleep(20);

} catch(InterruptedException e) { }

throw new Exception("Hi there");
-In this case, we've created a new Exception object, using the constructor that takes a string as its parameter. This sets of the message returned by the exception's getMessage() method.

public int remove() throws NoSuchElementException {

if(arr_elts == 0) throw new NoSuchElementException("array is already empty");

 --arr_elts;

 return arr[arr_elts];

18.

public class SavingsAccount extends Account {

-A subclass inherits everything from its parent. Everything, that is, except the parent's constructor methods

public SavingsAccount(double inter, double initial) {

 super(initial);

 interest = inter;

-In the parentheses after super is a list of the arguments that should be passed to the appropriate constructor method double to double etc…

-Polymorphism - objects automatically change form as circumstances warrant. Java won't convert down the inheritance hierarchy.
-not sure that it's a SavingsAccount, we could test whether it is first as follows.

 if(bank.getAccount(0) instanceof SavingsAccount) {

 ((SavingsAccount) bank.getAccount(0)).addInterest();

