Ryan Orwoll’s Sheet, Name :_________________

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ListeningExample extends JFrame implements ActionListener {

 JButton quit_button;

 JTextField number_field;

 public ListeningExample() {

 quit_button = new JButton("Quit");

 number_field = new JTextField();

 quit_button.addActionListener(this);
 Container contents = getContentPane();

 contents.add(number_field, BorderLayout.CENTER);

 contents.add(quit_button, BorderLayout.SOUTH);

 pack();

}

 public void actionPerformed(ActionEvent evt) {

 if(evt.getSource() == incr_button) {

 int i = Integer.parseInt(number_field.getText());

 number_field.setText("" + (i + 1));

 } else if(evt.getSource() == quit_button) {

 System.exit(0); // The System.exit class method

 }} halts entire program
 public static void main(String[] args) {

 (new ListeningExample()).show();

 }}

panel = new JPanel();

panel.add(new JLabel("Celsius: "));

panel.add(cels_field);

contents.add(panel);

MULTIDIMENSIONAL ARRAYS

int[][] mult;

mult = new int[10][10];

for(int i = 0; i < 10; i++) {

 for(int j = 0; j < 10; j++) {

 mult[i][j] = i * j;

 }}

TESTING AND DEBUGGING Solid testing requires the following 4 steps. Generate a test case. Determine what the results should be. Run the program to observe its results. Observe how the program's results differ from expectations.

White-box testing involves generating test cases while looking at the code. Generally, you're looking for a large enough set of test cases to hit all the cases in the code. Hit all execution paths. Hit all statements.

In black-box testing, the tester generates test cases without reference to the source code - that is, the tester is treating the program as a black box, into which the tester
cannot look. Hit the common cases. Hit any boundary cases. Try things in odd sequences.

In unit testing, each piece of the program is thoroughly tested before it is accepted. In Java, the most convenient way to break up a program into pieces will be into its separate classes.

public class CustomerTest {

 public static void main(String[] args) {

 Video[] vids = { new Video("A"), new Video("B"), new Video("C"),

 new Video("D"), new Video("E"), new Video("F") };

 Customer test = new Customer("Me");

 for(int i = 0; i < 5; i++) {

 try {

 test.checkOut(vids[i]);

 } catch(Exception e) {

 System.err.println("Unexpected exception on " + i + ": " + e);

 }

Integration testing requires that you draw a picture of which classes use which other classes, called a dependency graph.

When a software system is relatively complete, and the designers are engaged in incrementally adding new features, they often use regression testing.

Hand Tracing- Tracing through the code by hand, to see how variables change, is extremely common - much more common that you might initially think. It's just much easier to trace through the code than to repeatedly recompile and run a test case.

Print Statements- Print at the top of relevant methods. Print relevant variables after each change. in front of code that you think is wrong.

There are three helpful rules that you might keep in mind when you're trying to evaluate the speed of a program. Any segment of code that includes no loops or function calls takes O(1) time. If one segment of code takes X time and another takes Y time, then doing the first segment followed by the other takes a total of X + Y time. If each iteration of a loop takes X time and there are Y iterations of the loop, then the overall time for doing the loop is X*Y.

In your own words, describe what a Java interface is (this is related to the Java keyword interface), and what a class must do in order to claim that it implements the interface. An interface in Java is a set of methods. Any class that claims to implement the interface must define bodies for all these methods.
