Questions 1

Question 3.3-1: (Solution, p 3)

a. Give an example of an eight-bit number which, when arithmetically right-shifted one place, is different
from the same number logically right-shifted one place.

b. Give an example of an eight-bit number which, when arithmetically right-shifted one place, is the
same as the same number logically right-shifted one place.

Question 3.3-2: (Solution, p 3) Consider the following C program.

#include <stdio.h>

int mystery(int n, int i) {
return (n >> i) & (-1 << 1);

}

int mainQ) {
printf(""%d %d %d %d\n', mystery(OxFF, 2), mystery(OxFF, 5),
mystery(0x77, 3), mystery(0x02040608, 8));
return O;

}
What would this program print when run?

Question 3.3-3: (Solution, p 3) Consider the following C function.

int f(int x, int n) {
return x | (1 << (n - 1));
}
a. Whatdoesf (0, 2) return?
b. Whataboutf (8, 2)?
c. Whataboutf (f(0, 1), 2)?

Question 3.3-4: (Solution, p 3) Without using a loop, write a C function that retrieves the whi chth bit
from a number num The whi ch parameter should be between 0 and 31, where 0 represents the one’s bit of
the bit pattern, 1 represents the two’s bit, and so forth. For example, get Bi t (12, 2) andgetBit (12,
3) should return 1, whileget Bi t (12, 1) andgetBit (12, 4) would returnO.

int getBit(int num, int which) {

}

Question 3.3-5: (Solution, p 3) Without using loops or conditional statements, complete the following
C function so that it returns the largest power of 2 that divides into its parameter value n exactly. Thus,
di vi sor _pow2(52) would return 4, while di vi sor pow2( 56) would return 8.

int divisor_pow2(int n) {

¥
Hint: You can find the largest power of 2 dividing into a number exactly by finding the rightmost bit of the
number. For example, 5215y = 1101003 has its rightmost bit in the 4’s place; 56;0) = 1110005 has the
rightmost bit in the 8’s place.



2 Questions

Question 3.4-1: (Solution, p 3) Consider a 6-bit floating-point representation with a 3 bits for the excess-3
exponent and 2 bits for the mantissa.

a. How would 0.75(1¢) be represented in this 6-bit representation?

b. What decimal value does 011010 represent?

¢. What decimal value does 000010 represent?

d. How would infinity (oc) be represented in this representation?

Question 3.4-2: (Solution, p 3) Consider a 7-bit floating-point representation with a 3 bits for the excess-3
exponent and 3 bits for the mantissa.

a. What values do 1010100 and 00000100 represent? Express each answer as a decimal number or a
base-10 fraction.

b. What is the bit pattern of the smallest positive normalized number supported by this representation?
Convert this to a decimal fraction or number.

¢. What is the bit pattern of the largest denormalized number supported by this representation? Convert
this to a decimal fraction or number.

d. Suppose we add 0101010 and 1111000 as 7-bit floating-point numbers. What is the bit pattern of the
result?

Question 3.4-3: (Solution, p 3) Give an example of three floating-point numbers z, y, and z, such that
the distributive property z(y + z) = zy + zz does not hold. (Feel free to describe the values rather than
give numerical values: For example, you might say “the largest denormalized number” rather than give a
particular value.) Note: Your answer should include the values of z(y + z) and zy + zz for your values of
z, y, and z.

Question 3.4-4: (Solution, p 3) Give an example of three floating-point numbers z, ¢, and z such that the
associative property of addition z + (y + z) = (z + y) + z does not hold. (Feel free to describe the values
rather than give numerical values: For example, you might say “the largest denormalized number” rather
than give a particular value.) Note: Your answer should include the values of z + (y + z) and (z + y) + =
for your values of z, ¢, and z.



Solutions 3

Solution 3.3-1: (Question, p 1)
a. 11111111 (or any other sequence beginning with 1).

b. 00000000 (or any other sequence beginning with 0).
Solution 3.3-2: (Question,pl1) 3 7 6 6

Solution 3.3-3: (Question,pl) a. 2
b. 10
c. 3

Solution 3.3-4: (Question, p 1)

int getBit(int num, int which) {
return (num >> which) & 1;

}
Solution 3.3-5: (Question, p 1)

int divisor_pow2(int n) {
return n & -n;

}
Solution 3.4-1: (Question, p2) a. 001010
b.  12.0(0
C 0125(10)
d. 011100

Solution 3.4-2: (Question, p 2) —0.75(19), 0.125(1)

Qo oo

0001000, which converts to 1/4 or 0.25
0000111, which converts to 7/32 or 0.2187
1111000 (since anything added to —oc is —o0)

Solution 3.4-3: (Question, p 2) One possibility is z = 0.5, y = largest possible number, and z = 1. In this

case, z(y + z) is infinity, while zy + zz is a finite number.

Another possibility is z = oo, y = —1, and z = 1. In this case, z(y + z) is infinity (since oo - 0 = o0),

while zy + zz is NaN (since —oo 4+ oo = NaN).

While these answers are fine, they are somewhat dissatisfying because of their reliance on overflow. Another
possibility, which does not resort to nonnumeric values, has = = 0.5, y = smallest possible number, and z =
smallest possible number. In this case, z(y + z) is the smallest possible number, while zy + xz results in

adding two numbers that are too small to represent, so we get 0.

Solution 3.4-4: (Question, p 2) Suppose z = —2190 ¢ = 2100 and z = 1. Then
T _|_ (y + Z) — _2100 + (2100 + 1) — _2100 + 2100 — 0
(2100 4 1 = 2190 since the 1 can’t be represented within the number’s precision) and

(z+y)+2z=(-2"0+2"9) +1=0+1=1



