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Chapter 0

Intr oduction

Machine learning attemptsto tell how to automaticallyfind a good predictorbasedon pastexperiences.
Although you might amgue that machinelearninghasbeenaroundaslong as statisticshas, it really only
becamea separateopic in the 19905. It draws its inspirationfrom a variety of academicdisciplines,
includingcomputersciencestatistics biology, andpsychology

In this classwe’re goingto look at someof the significantresultsfrom machindearning.Onegoalis to
learnsomeof thetechnique®f machindearning,but also,just assignificant,we aregoingto getaglimpse
of the researcHront andthe sort of approachesesearcherbave taken toward this very netulous goal of
automaticallyfinding predictors.

Researchensave approachethe generalgoal of machindearningfrom avarietyof approacheBefore
we delve into detailsaboutthese,let’'s do a generalovervievn of machinelearningresearch. This also
constitutessomethingof anoutline of thistext: We'll spenda chapteron eachof thefollowing topics.

0.1 Datamining

With the arrival of computingin all facetsof day-to-daybusinessthe amountof accessiblelatahasex-
ploded. Employerskeepinformationaboutemplo/ees,businesse&eepinformationaboutcustomershos-
pitals keepinformation aboutpatients,factoriesget information aboutinstrumentperformancescientists
collectinformationaboutthe naturalworld — andit’ s all storedin computersreadyto accessn mass.

Datamining is graduallyproving itself asan importanttool for peoplewho wish to analyzeall this
datafor patterns. One of the most famousexamplesis from the late 1970s,when datamining proved
itself aspotentiallyimportantfor bothscientificandcommerciapurpose®n a particulartestapplicationof
diagnosingdisease# soybeanplants[MC80].

First the researcherfound an expert, who they intervieved for a list of rulesabouthow to diagnose
disease®n a soybeanplant. Thenthey collectedabout680 diseasedoybeanplantsanddeterminedabout
35 piecesnf dataon eachcasg(suchasthemonththeplantwasfoundto have adiseasetheamountof recent
precipitation,the size of the plant’s seedsthe conditionof its roots). They handedhe plantsto the expert
to diagnoseandthenthey performedsomedatamining techniquego look for rulespredictingthe disease
basednthecharacteristicthey measured.

Whatthey foundis thatthe rulesthe expert gave during the interviev wereaccurateonly 70% of the
time, while the rules discoreredthroughdatamining were accurated7.5% of the time. Moreover, after
revealingtheserulesto the expert,the expertreportediywasimpresse@noughto adoptsomeof therulesin
placeof the onesgivenduringtheinterview!

In this text, we’'ll seeafew of the moreimportantmachinelearningtechniquesisedin datamining, as
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well assurroundingssueshatapply regardlessof thelearningalgorithm. We’'ll emepge from this familiar
with muchof the establisheanachingearningresultsandpreparedo studylesspolishedresearch.

0.2 Neural networks

Cognitive scienceaimsto understandiow the humanbrainworks. Oneimportantpartof cognitive science
involves simulatingmodelsof the humanbrain on a computerto learn more aboutthe model and also
potentiallyto instill additionalintelligenceinto the computer

Thoughscientistsarefar from understandinghe brain, machindearninghasalreadyreapedhe reward
of artificial neural networks(ANNs). ANNSs are deplosed in a variety of situations. One of the more
impressie is ALVINN, asystenthatusesan ANN to steeracaronahighway [Pom93. ALVINN consists
of anarrayof camera®nthecar, whoseinputsarefedinto asmallANN whoseoutputscontrolthe steering
wheel. The systenmhasbeentestedgoingup to 70 milesperhourover 90 milesof a public divided highway
(with othervehiclesontheroad).

Herewe'll look briefly at humanneuronsandhow artificial neuronsmodeltheir behaior. Thenwe’'ll
seehow they might be networkedtogetherto form anartificial neuralnetwork thatimproveswith training.

0.3 Reinforcementlearning

Throughthis point, we’'ll have worked exclusiely with systemghat needimmediatefeedbackirom their
actionsin orderto learn. Thisis supervisedlearning, which thoughusefulis a limited goal.

Reinforcementlearning (sometimesalled unsuperised learning) refersto a brandof learningsit-
uation wherea machineshouldlearnto behae in situationswherefeedbackis not immediate. This is
especiallyapplicablein roboticssituationswhereyou might hopefor arobotto learnhow to accomplisha
certaintaskin the sameway a doglearnsa trick, without explicit programming.

Probablythe mostfamoussuccesstory from reinforcementearningis TD-Gammon,a programthat
learnsto play the gameof Backgammor[Tes93. TD-Gammonusesa neuralnetwork coupledwith re-
inforcementlearningtechniques.After playing againstitself for 1.5 million games the programlearned
enoughto rankamongthe world’s bestbackgammomplayers(including bothhumansandcomputers).

Reinforcementearningis muchmore challengingthansupervisedearning,andresearcherstill don't
have agoodgrasponit. We'll seeafew of the proposedechniquesthough,andhow they canbeappliedin
situationdik e theonethat TD-Gammortackles.

0.4 Artificial life

Finally, artificial life seeksto emulateliving systemswith a computer Our study of artificial life will
concentrateon geneticalgorithms,where systemsoosely basedon evolution are simulatedto seewhat
might evolve. They hopeto evolve very simple behaior, like that of amoebasthus gaining a greater
understandingf how evolution worksandwhateffectsit has.

In asensetheevolutionaryprocesdearn— thoughusuallytheverbwe useis adapt If youunderstand-
ing learningasimproving performancdéasedn pastexperiencetheword learn hasa similar denotatiorto
adapt evenif theconnotationis different.

Geneticalgorithmsappearto be a promisingtechniquefor learningfrom pastexperience gvenoutside
simulationsof pseudo-biologicalWe’'ll look at this technique andthenwe’ll look at its usein attempting
to evolve simplebehaiors.
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Data mining

Datais alundantin todays society Every transactiongvery accomplishmengetsstoredaway someavhere.
We getmuchmoredatathanwe couldever hopeto analyzeby hand.A naturalhopeis to analyzehedataby
computer Data mining refersto the varioustasksof analyzingstoreddatafor patterns— seekingclusters,
trends predictorsandpatterndn a massof storeddata.

For example,mary grocerystoresnov have customercards,rewarding frequentusersof the grocery
storewith discountson particularitems. The storesgivesthesecardsto encourageustomeroyalty and
to collectdata— for, with this cards,they cantrack a custometbetweervisits to the storeandpotentially
minethe collecteddatato determinepatternsof custometbehaior. Thisis usefulfor determiningwhatto
promotethroughadwertisementshelfplacementpr discounts.

A large bankingcorporationmakes mary decisionsaboutwhetherto accepta loan applicationor not.
On handis a variety of informationaboutthe applicant— age,employmenthistory salary credit history
— andaboutthe loan application— amount,purpose jnterestrate. Additionally, the bank hasthe same
information aboutthousand®f pastloans,plus whetherthe loan proved to be a goodinvestmentor not.
Fromthis, the bankwantsto know whetherit shouldmale the loan. Datamining canpotentiallyimprove
theloanacceptanceatewithout sacrificingon the default rate, profiting boththe bankandits customers.

1.1 Predicting from examples

We'll emphasize particulartype of datamining calledpredicting from examples In this scenariothe
algorithmhasaccesdo severaltraining examples representinghe pasthistory Eachtrainingexampleis a
vectorof valuesfor the differentattrib utes measuredin our bankingapplication,eachexamplerepresents
a singleloanapplication,representethy a vectorholding the customerage,customersalary loanamount,
andothercharacteristicsf theloanapplication.Eachexamplehasalabel, whichin thebankingapplication
might bea ratingof how well theloanturnedout.

Thelearningalgorithmseesall theselabeledexamples,andthenit shouldproducea hypothesis— a
new algorithmthat, given a nev vectorasan input, producesa predictionof its label. (Thata learning
algorithmproducesanotheralgorithmmay strike you asodd. But, giventhe variety of typesof hypotheses
thatlearningalgorithmsproduce thisis the bestwe cando formally.)

In Sectionl.1,we briefly lookedat somedatamining resultsfor soybeandiseasealiagnosidby Michalski
andChilausky [MC80]. Figurel.lillustratesa selectionof the datathey used.(I’ ve takenjust sevenof the
680 plantsandjust four of the 35 attributes.) Therearesix training exampleshere,eachwith four attributes
(plantgrowth, stemcondition,leaf-spothalo,andseedmold) andalabel (thedisease)We would feedthose
into thelearningalgorithm,andit would producea hypothesighatlabelsary plantwith a supposediisease.
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plant stem haloon moldon

growth  condition leafspots seed disease
PlantA  normal abnormal no no frog eye leaf spot
PlantB abnormal abnormal no no herbicideinjury
PlantC  normal normal yes yes downy mildew
PlantD abnormal normal yes yes bacterialpustule
PlantE  normal normal yes no bacterialblight
PlantF  normal abnormal no no frog eye leaf spot
PlantQ  normal normal no yes ??7?

Figurel.1: A prediction-from-gampks problemof diagnosingsoybeandiseases.

sepal sepal petal petal

length width length width species
IrisA 4.7 3.2 1.3 0.2 setosa
Iris B 6.1 2.8 4.7 1.2 versicolor
IisC 5.6 3.0 4.1 1.3  versicolor
IrisD 5.8 2.7 5.1 1.9  virginica
IrisE 6.5 3.2 5.1 2.0  virginica
IisQ 5.8 2.7 3.9 1.2 2?7?72

Figurel.2: A prediction-from-gamplesproblemof Iris classification.

PlantQ, representing new plantwhosediseasave wantto diagnoseillustrateswhatwe might feedto the
hypothesigo arrive ata prediction.

In thesoybeandata,eachof thefour attributeshasonly two possiblevalues(eithernormalandabnormal,
or yesandno); thefull datasethassomeattributeswith more possiblevalues(the monthfound could be
ary monthbetweenApril or October;the precipitationcould be belov normal,normal,or abore normal).
But eachattribute hasjust a smallnumberof possiblevalues.Suchattributesarecalleddiscrete attrib utes

In somedomains attributesmay be numeric instead.A numericattribute hasseveral possiblevalues,
in a meaningfullinear order Considerthe classicdatasetcreatedby Fisher a statisticianworking in the
mid-19309Fis36. Fishermeasuredhe sepalsandpetalsof 150differentirises,andlabeledthemwith the
specificspecieof iris. Forillustrationpurposeswe’ll justwork with thefive labeledexamplesof Figurel.2
andthe singleunlabeledexamplewhoseidentity we wantto predict.

Thesewo examplesof datasetscomefrom actualdatasets but they aresimplerthanwhatonenormally
encounterdn practice.Normally, datahasmary moreattributesandseveraltimesthe numberof examples.
Moreover, somedatawill be missing,andattributesareusuallymixedin character— someof themwill be
discretglike aloanapplicants stateof residencejvhile othersarenumeric(like theloanapplicants salary).
But thesethingscomplicatethe basicideas,which is whatwe wantto look at here,sowe’ll keepwith the
idealizedexamples.

1.2 Techniques

We're goingto look at threeimportanttechniquegor datamining. The first two — linear regressionand
nearest-neighb@earch— arebestsuitedfor numericdata.Thelast,ID3, is aimedat discretedata.
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Figurel.3: Fitting aline to a setof data.

1.2.1 Linear regression

Linear regressionis oneof the oldestforms of machinelearning. It is along-establishedtatisticaltech-
niquethatinvolvessimplyfitting aline to somedata.

Single-attribute examples The easiestasefor linearregressions whenthe exampleshave a singlenu-
mericattributeandanumericlabel;we’ll look atthis casdfirst. Saywe have n exampleswheretheattribute
for eachexampleis calledz;, andthelabelfor eachis y;. We canervision eachexampleasbeinga pointin
2-dimensionakpacewith anz-coordinateof =; anda y-coordinateof y;. (SeeFigurel.3(a).)

Linear regressiorwould seekthe line f(x) = mx + b (specifyingthe prediction f (z) for ary given
single-attrilute example(z)) thatminimizesthe sum-of-squaseserror for thetrainingexamples,

> (v~ ().

i=1
(SeeFigurel.3(b).) Thequantity|y; — f(z;)| is thedistancerom thevaluepredictedby thehypothesidine
to theactualvalue— the errorof the hypothesidor this trainingexample.Squaringhis valuegivesgreater
emphasigo largererrorsandsavesusdealingwith complicatedabsolutevaluesin the mathematics.

For example we mightwantto predictthe petalwidth of aniris givenits petallengthusingthe data
of Figure 1.2. Here z; is 1.3 (the petallengthof Iris A) andy; is 0.2. Fromlris B, wegetzs = 4.7
andy, = 1.2. Wegetsimilar datafromlris C, Iris D, andlris E. Figure 1.3 graphsthe points.

With a little bit of calculus,it’s not too hardto computethe exact valuesof m andb that minimize
the sum-of-squaresrror. We’'ll skip the dervation andjust shav theresult. Let z be the averagez value
((32; z4)/n) andy betheaveragey value((}_; i) /n). Theoptimalchoicesfor m andb are
(Zﬂi:gi) —nf?fg’b —

(X 77) — na?

For theirises, we computethat }°, z; = 20.3 andhencez = 4.05, >°,y; = 6.6 andhencey =
1.32, >, zy; = 31.12, 3, xf = 92.61. Knowingthese we computem to be (31.12 — 5 - 4.05 -
1.32)/(92.61 — 5 - 4.052) = 4.39/10.5975 ~ 0.4142 andb to be 1.32 — 0.4142 - 4.05 = —0.3577.
Soour hypothesiss that, if the petallengthis z, thenthe petalwidth will be

0.4142x — .3577 .

Onlris Q, with a petallengthof 3.9, this hypothesisvould predicta petalwidth of 1.26, nottoo far
fromtheactualvalueof 1.2. (Ontheotherhand,thehypothesisvouldpredicta negative petalwidth
for a veryshortpetal,which is clearly not appropriate)
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Multiple-attrib ute examples Wheneachpieceof trainingdatais a vectorof several attributes,the prob-
lem becomesmore complicated. What we're going to do is to expandthe single-attriluite example by
expandingthe dimensionsof the space. If eachexamplehasjust two attributes, we could view eachla-
beledexamplein three-dimensionaspace,with an z-coordinatecorrespondingo the first attribute, the
y-coordinatecorrespondingo the secondattribute, andthe z-coordinatecorrespondingdo the label. We'd
look for aplanef(z,y) = mgx + myy thatminimizesthe sum-of-squaresrror

For agenerahumberof attributesd, we'll view eachlabeledexampleasapointin (d + 1)-dimensional
spacewith a coordinatefor eachattribute, plus a coordinatefor the label. We'll look for a d-dimensional
hyperplanef (z1, z2,...,z4) = Z;i:l m;x; thatminimizesthe sum-of-squaresrror.

This is slightly differentthanthe two-dimensionakasebecausehis f(z) is forcedto go throughthe
origin (0,0,...,0). Forcingthis keepsthe mathematicgrettier If we wantto beableto learna hyperplane
that doesnt necessarilygo throughthe origin, we can get aroundthis limitation by simply insertingan
additionalattribute to every vectorthatis always1 (sothatm;z; for thatcoordinatds justthe constantmn;).

For theiris example we'rein 6-dimensionakpace We're addingtheextra alwaysi attribute giving
usatotal of d = 5 attributesin ead example andthenwe havethe label. Thelabel needsto be
numeric,thoughtheiris examplelabelsarent. Whatwe’ll dois saythatthelabelis 1 if thespecies
is versicolorand 0 otherwise Thusif the predictedvalueis large (at least0.5), the hypothesigs
thattheiris is probablyversicolorandif the predictedvalueis small (lessthan0.5), the hypothesis
is that it is probablynot. Thuslris A is at the point (1,4.7,3.2,1.3,0.2,0). Iris B is at the point
(1,6.1,2.8,4.7,1.2,1).

We'll usethe notationz;; to referto the ith examples jth attribute valueandthe notationy; to referto
thesth examples label. Thusour examplesareasfollows.

( zu, T2, 213, ---, Tid, Y1 )
( zo1, x22, Z23, ..., Zod, Y2 )
( Tnls, Tn2y, ITn3, ---5 Tnd, Yn )

We wantto find a setof coeficientsm; sothatthefunction f(z) = Zle m;x; ascloselyapproximateshe
y; aspossible(still usingthe sum-of-squaresrror). To computethis f(x), it turnsoutthatwe needto solve

asetof equations.
izazin)mi + (Cizazie)me + -+ (X, Ta%ig) ma = D; Ti1Vi
(Ciziozin) mi +  (XC;xiozi)me 4+ - 4+ (i zio%id) Ma = Y; Tioli
i migzin)m1 + (X xiazie) me + -+ (X TidTid) Ma = Y; TiaVi

Herewe have d equationsandd unknavns (namely mq throughmy). After we solve for them;, the best-fit
hyperplanés thefunction f(z) = Y, m;z;. Givenanexample(z1,...,z4) for which we wantto make a
prediction,we would predictf ((z1, . .., z4)).

Soto computethe best-fithyperplandor our versicolorlabeling we’ll haveto find our setof equa-
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tions. To do that we needto computea lot of sums.Here we go.

2 TilTil
Ei Ti1%42
2 i TilTi3
22 TilTia
> Ti1Tis
EZ’ Zi1Yi

Ei Ti2%42
> Ti2Ti3
Ei Ti2Ti4
> Ti2Tis
Zi Zi2Y;

> Ti3Ti3
2i TizTid
Ei L3345
> i TisYi

Ei TiaTia
> TiaTis
Zi Ti4Yi

> TisTis
> TisYi

Zi ZieYi

12412412 +1%2 412
1-47+1-614+1-56+1-58+1-
1-32+1-2841-3.0+1-27+1-
1-13+4+1-474+1-414+1-51+1-
1-02+1-1.241-134+1-1.9+1-
1-0+1:-1+1-141-04+1-0

477 +6.12 + 5.62 + 5.8% + 6.52

6.5
3.2
5.1
2.0

47-3246.1-284+56-3.04+58-2.7+6.5-3.2
47-13+6.1-47+56-41+58-5.14+6.5-5.1
47-02+46.1-1.2456-1.34+58-1.94+6.5-2.0
47-0+6.1-14+56-14+58-04+6.5-0

3.22 +2.8%2 4+ 3.0%2 4+ 2.7% 4 3.22

32-13+4+28-47+3.0-41+2.7-51+3.2-5.1
32-02+4+28-12+3.0-1.3+4+2.7-1943.2-20
32-04+28-14+3.0-1+27-0+3.2-0

1.32 4+ 472 + 412 +5.12 + 5.12

1.3:02+4+47-1.2441-1.34+5.1:1.945.1-2.0
13-04+47-1441-14+51-045.1-0

0.22 +1.22 +1.32 4+ 1.9%2 4 2.02

02-04+12-14+13-1+19-0+2.0-0

02+12+12 402402

Fromthesewe derivea setof five equationswith five unknowns.

5.0m1
287m1
14.9m1
20.3my
5.5m1

_I_
+
+
+
+

28.70mo + 14.90m3 +  20.30my4
166.55my + 85.38m3z + 120.47my
85.38my + 44.61msz +  59.71my
120.47ms + 59.71msg +  92.61my
39.56my + 19.43ms + 31.12my4

_|_
+
+
+

+

5.50ms
39.56ms
19.43m5
31.12mg
10.78ms

5.0
28.7
14.9
20.3

6.6

2.0

166.55
85.38

120.47
39.56
11.7
44.61
99.71
19.43

5.8
92.61
31.12

8.8
10.78

2.5

2.0

2.0
11.7
5.8
8.8
2.5

Nowwe solvethisto get the hyperplanehypothesis(You cantry to doit by hand,but at this point |
broke downandwentto a compute) Theanswerturnsoutto bethefollowing.

f(xl,dig,.’lig, T4, .’L‘5) = 0.308z1 + 0.736z5 — 1.00x3 — 0.278z4 — 0.020z;5

For Iris Q, the predictedansweris

0.308 -1+ 0.736 - 5.8 — 1.00 - 2.7 — 0.278 - 3.9 — 0.020 - 1.2 = 0.767 .

Thuslinear regressionindicatesthatweare fairly confidenthatlris Q is versicolor(asindeedit is).

Analysis Linearregressioris really bestsuitedfor problemswheretheattributesandlabelsareall numeric
andthereis reasorto expectthatalinearfunctionwill approximatehe problem.Thisis rarelyareasonable

expectation— linearfunctionsarejusttoo restrictedto represena wide variety of hypotheses.

Advantages:

e Hasrealmathematicatigor.
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e Handlesirrelevant attributessomeavhat well. (Irrelevant attributestendto get a coeficient closeto
zeroin thehyperplanes equation.)

¢ Hypothesidunctionis easyto understand.
Disadvantages:

e Oversimplifiesthe classificatiorrule. (Why shouldwe expecta hyperplando be a goodapproxima-
tion?)

¢ Difficult to compute.
¢ Limited to numericattributes.

e Doesnt atall represenhow humandearn.

1.2.2 Nearestneighbor

Our secondapproactoriginatesin the ideathatgiven a query the training examplethatis mostsimilar to

it probablyhasthe samelabel. To determinewhat we meanby most“similar’, we have to designsome
sortof distancefunction. In mary casesthe bestchoicewould be the Euclidean distancefunction, the

straight-linedistancebetweenthe two points (z;1, T2, - . . , Ziq) and(z;1,zj2,...,x;q) in d-dimensional
space.Theformulafor thiswould be

\/(%‘1 —xj1)2 + (T2 — 2j2)2 + -+ + (Tig — T5q)? -
Anothercommonpossibilityis to usethe Manhattan distancefunction,
lzi1 — zj1| + |zio — zjo| + -+ + |Tig — z4q] -

In practice,peoplegenerallygo for the Euclideandistancefunction. They dont really have muchmathe-
maticalreasoningo backthis up; it justseemso work well in general.

In the Iris example we’ll computethe Euclideandistancefrom ead of the vectos for thetraining

examplego the queryvectorrepresentingris Q.
example distance label

Iris A V(4.7-58)2+(32—-27)2+(1.3-39)?+ (0.2 —-1.2)> =304 setosa

Iris B V(6.1 —-58)2+ (2.8 —2.7)2+ (4.7—-3.9)2+ (1.2—-1.2)2 =0.86 versicolor
Iris C V(5.6 —5.8)2+ (3.0 —2.7)2 + (4.1 —3.9)2 + (1.3 - 1.2)2 =0.42 versicolor
Iris D V(5.8—-58)2+(2.7-27)%2+(51-39)2+(1.9-1.2)2 =139 virginica

Iris E V(6.5 -5.8)2+ (3.2 —2.7)%+ (5.1 —3.9)2 + (2.0 — 1.2)2 =1.68 virginica
Sincelris C is the closestthe neaest-neighboralgorithm would predictthat Iris Q hasthe same
label aslris C: versicolor

Therearetwo commonrefinementdo the nearest-neighbalgorithmto addresssommonissueswith
thedata.Thefirst is thatthetheraw Euclideandistanceoveremphasizeattributesthathave broaderanges.
In thelris example,the petallengthis givenmoreemphasighanthe petalwidth (sincethelengthvariesup
to four centimeterswhile the width only variesup to two centimeters).This is easyto fix by scalingeach
attribute by themaximumdifferencein theattribute values to ensurghatthedistancenbetweertwo attribute
valuesin the sameattribute never exceedsl.

iL‘ij

Vij = .
J maxg Tg; — Mg Tk
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By applyingthe distancefunctionto thew;; insteadof the z;;, this artificial overemphasislisappears.

The secondcommonrefinementis to addresghe issueof noise — typically, a small but unknavn
fraction of the datamight be mislabeledor unrepresentate. In theiris example,lris C may notreally be
versicolor. Or perhapdris C’s dimensionsareuncharacteristiof versicolor specimensWe cangetaround
this usingthelaw of large numbers:Selectsomenumberk andusethe k. nearesheighbors.The prediction
canbethe averageof thesek nearesneighbordf thelabel valuesarenumeric,or the plurality if the label
valuesarediscrete(breakingtiesby choosinghe closest).

If wechoosek to be 3, wefind that thethreeclosesirisesto Iris Q are IrisesB, C, and D, of which
two are versicolorandoneis virginica Theefore westill predictthatIris Q is versicolor

Analysis Thenearest-neighbalgorithmandits variantsareparticularlywell-suitedto collaborative fil-
tering, wherea systemis to predicta given persons preferencebasedon other peoples preferencesFor
example,amovie Website might askyou to ratesomemoviesandthentry to find moviesyou'd like to see.
Here,eachattribute is a singlemovie thatyou have seen,andthe Web site looks for peoplewhosemaovie
preferencesrecloseto yoursandthenpredictsmoviesthattheseneighbordikedbut thatyou have notseen.
Or you might seethis on book-shoppingites,wherethe site makesbook recommendationsasedon your
pastorderhistory

Collaboratve filtering fits into the nearest-neighbagearchwell becausattributestendto be numeric
andsimilarin nature soit makessensdo give themequalweightin the distancecomputation.
Advantages:

e Representsomplex spaceverywell.
e Easyto compute.
Disadvantages:

e Doesnot handlemary irrelevantattributeswell. If we have lots of irrelevant attributes,the distance
betweerexampless dominatedvy thedifferencesn theserrelevantattributesandsobecomesnean-
ingless.

e Still doesnt look muchlike how humandearn.

¢ Hypothesidunctionis too comple to describesasily

1.2.3 1D3

Linear regressionand nearest-neighbosearchdon't work very well whenthe datais discrete— they're
really designedor numericdata.lD3 is designedwith discretedatain mind.

ID3’s goal is to generatea decisiontree that seemsto describethe data. Figure 1.4 illustratesone
decisiontree. Givena vector the decisiontreepredictsa label. To getits prediction,we startat thetop and
work downward. Saywe take PlantQ. We startat the top node. SincePlantQ’s stemis normal,we go to
theright. Now we look for mold on PlantQ’s seedsandwe find thatit hassome sowe goto theleft from
there. Finally we examinethe spotson PlantQ’s leaves; sincethey don't have yellow halos,we go to the
right andconcludethatPlantQ musthave dovny mildew.

Decisiontreesarewell-suitedfor discretedata. They represent goodcompromisebetweersimplicity
andcompl«ity. Recallthatoneof our primary complaintsaboutlinear regressionwasthatits hypothesis
wastoo constrictedo representery mary typesof data,while oneof our primarycomplaintsaboutnearest-
neighborsearchwasthatits hypothesisvastoo comple to be understandableDecisiontreesare easyto
interpretbut canrepresena wide variety of functions.
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bacterial
pustule

on seed
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Figurel.4: A decisiontreeexample

Given a setof data,the goal of ID3 is to find a “good” decisiontreethatrepresentst. By good the

generaloalis to find a smalldecisiontreethatapproximateshetrue label pretty well.

Constructing the tree automatically 1D3 follows a simpletechniquefor constructingsucha decision
tree. We bagin with a singlenodecontainingall the training data. Thenwe continuethe following process:
We find somenodecontainingdatawith differentlabels,andwe split it basedon someattribute we select.
By split, | meanthatwe take the nodeandreplaceit with nen nodesfor eachpossiblevalueof the chosen
attribute. For example,with the soybeandata,if we have a nodecontainingall the examplesandchooseo

split on plantgrowth, the effect would be asfollows.

AB,CDEF B,D

ACEF

beforethe split afterthesplit

We stopsplitting nodeswhenevery nodeof thetreeis eitherlabeledunanimouslyor containsndistinguish-

ablevectors.

How doesID3 decideon which attribute to split a node?Beforewe answetthis, we needto definethe

entropy of asetof examples.Theentropy of asetS is definedby thefollowing equation.

Entropy(S) = Y —p¢Inpy

labels?
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Herepy is thefractionof pointsin the setwith thelabel .

In thetraining dataof Figure 1.1, there are fivelabels: 2/6 of the exampleshavefrog eyeleaf spot,
and1/6 of theexampleshaveead of thefour otherdiseasesSotheentiopyis
2.2

11 1.1 1.1 1.1
iy ct ittt 15607,
66 66 66 66 66

Thisentopyis ratherlarge, quantifyingthefactthatthe setisn’'t labeledconsistenthat all.

Theentropy is aweird quantitythatpeopleusemoreor lessjust becausdt works. Whenthe entropy is
small,thisindicateshatthingsarelabeledpretty consistently As anextremeexample,if everythinghasthe
sameabel/, thensincep, = 1 theentrofy would bejust —p; Inp, = 0. We're aimingfor asmalldecision
treewherethetotal entrogy of all theleavesis assmallaspossible.

Now let’s look at whathappenavhenwe split a node. This splitsthe setof examplesit representinto
pieceshasedn thevaluesof theattribute. To quantifyhow goodthe split is, we definethe gain of splitting
anodeon a particularattribute: It is theentrogy of theold setit representedninustheweightedsumof the
entropiesof the new sets.Say.S representsheold set,and.S, representshe examplesof S with thevalue
v for theattribute underconsiderationThe gainwould be

Entropy(S) — ) @Entmpy(&,) .
valuesv 5]
At the baginning of the algorithm, all the examplesare in a singlenode Let’s considersplitting on
the plant growth. We just computedhe entopy of all six training examplego be 1.5607. After we
split on plant growth, we get two setsof plants: B and D haveabnormalplant growth (this sethas
entopy—(1/2)In(1/2)+—(1/2) In(1/2) = 0.6931); andA, C, E, andF havenormalplantgrowth
(this sethasentropy 1.0397). Sothegain of splitting on plantgrowthis

2 4
1.5607 — (60.6931 + 61'0397> = 0.6365 .

We cando similar calculationsto computethe gain for stemconditioninstead.Thisdividesthe
plantsinto a setof A, B, andF (entiopy0.6365) anda setof C, D, andE (entopy 1.0986). Thegain
of splitting on stemconditionis

1.5607 — (%0.6365 + %1.0986) = 0.6931

Thisis larger thanthe gain for plant growth, sosplitting on stemconditionis preferable

After computingthe gainsof splitting for eachof the attributes,we choosethe attribute that givesthe
largestgainandthensplit onit, giving usanew tree.We continuesplitting nodesuntil theexamplesn every
nodeeitherhave identicallabelsor indistinguishablettributes.

We wouldalsoconsidersplitting onleaf-spothalos(gain of 0.6931)andsplitting on seedmold(gain
of 0.6367).0f thesg we could go with either stemconditionor leaf-spothalos: They both havethe
samegain, 0.6931.We'll choosestemcondition,givingusa new tree

stem
condition

abnormal norma

A B F C,D,E
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We repeatthe procesdor eat of theremainingsets.We first considerPlantsA, B, andF. They
don't havethe samediseasesowe’ll look for an attribute on which to split them. Thatturnsoutto
be easy asthey disagree only on the plant-giowth attribute (noneof themhaveleaf-spothalosor
seedmold),sowe’ll split that nodebasedon plant growth. (Thegain of thiswouldbe 0.6365 while
splitting on leaf-spothalosor seedmoldgivesa gain of 0.) Nowwe havethefollowing tree

stem
condition

abnormal norma

abnorma

B A F

Thesetof A and F isn't a problem,as they both havethe samedisease Sothe next setwe’ll
considerfor splittingis C, D, andE. Thele, thegainfor splitting basedon plant growthis 1.0986 —
((2/3)0.6931 + (1/3)0) = 0.6365. Thegainfor splitting on leaf-spothalosis 0, sincethey all have
leaf-spothalos. Thegain for splitting on seedmoldis 1.0986 — ((2/3)0.6931 + (1/3)0) = 0.6365.
We couldgo for eitherplantgrowthor seedmold; saywe chooseseedmold.

stem
condition

abnormal norma

abnorma normal

B A F C,D E

Finally, we considerhow to split Plants C and D. Splitting on plant growth givesa gain of
0.6931 ,while splitting on leaf-spothalosgivesa gain of 0. We mustsplit on plantgrowth, giving us
thetreeof Figure 1.4.
Analysis Advantages:
e Representsomplex spacesvell.
e Generatea simple,meaningfulhypothesis.

e Filtersoutirrelevantdata.

Disadvantages:
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Figurel1.5: Overfitting somedata.

e Doesnt handlenumericattributeswell.

e Still doesnt look muchlike how humandearn.

1.3 Generalissues

Thereareanumberof overarchingdatamining issueghatapplyregardlesof thetechnique Theimportance
of theseissuegmakesthemworth studyingseparatelyWe’'ll look atjustafew.

Data selection Choosingthe datais animportantelementof applyingdatamining techniquesOf course
we wantthe datato have integrity — thoughtheres a naturaltradeof betweenintegrity andquantitythat
we have to balance We certainlyneeda goodsampleof data,or elsethelearnechypothesisvon’t beworth
much.But we alsoneeda large sampleto work from.

Lessolviousis theimportanceof a selectinggoodattributes. Sometimesve needto do someprepro-
cessingo getgooddata.For example,with loanapplicationsthe applicants dateof birth is probablywhat
is really storedon the computer but really this isn't significantto the application(neglecting astrological
effects)— what's importantis the applicants age. So, thoughthe databaserobablyholdsthe birthday
we shouldcomputethe ageto give to the learningalgorithm. We canseea similar thing happeningn the
soybeandata(Figure1.1): Insteadof giving the plant height(which after all, coupledwith the monththe
plantwasfoundimplieswhethergrowth is stunted) the datasetjustincludesa featuresayingwhethemlant
growth is normalor abnormal. The researcherfieredid somepreprocessingo simplify the taskfor the
learner

Overfitting  In applyinga machinelearningtechnique we needto be carefulto avoid overfitting. This
occurswhenthe algorithm adaptsvery carefully to the specifictraining datawithout improving general
performance For example,considerthe two graphsin Figure 1.5. Althoughthe graphat the right fits the
dataperfectly it's likely thatthegraphatleft is a betterhypothesis.

Overfitting appliesto just aboutary learningalgorithm. ID3 is particularly proneto overfitting, as
it continuesgrowing the tree until it fits the dataperfectly Machinelearningresearchertave ways of
working aroundthis, but they getrathercomplicatedandsowe’re choosingto skip theirapproaches.

Theres atradeof: Do we go for the perfectfit (which maybe anoverfit), or do we settlefor a simpler
hypothesighat seemsto be pretty close? The answeris that this is part of the art of applying machine
learningtechniqueso datamining. But anaid to thisis to beableto evaluatetheerrorof agivenhypothesis.

Evaluating hypotheses Oncewe geta hypothesifrom a learningalgorithm,we often needto getsome
sortof estimateof how goodit is. Themosttypical measuras theerror: theprobabilitythatthe hypothesis
predictsthewronglabelfor arandomlychosemew example.
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It's very temptingto feedall the datawe have into thelearningalgorithm,but if we needto reportthe
hypothesisrror, thisis a mistale. We alsoneedto usesomedatato computethe error, andwe cant reuse
thetraining datafor this computation(This would be analogougo giving studentsall the answergo atest
thedaybefore:Of coursethey’ll dowell onthetest,but whathave they learned?)

Soin situationswherewe needto computethe error, we separatehe datainto two sets— thetraining
set which holdsthe exampleswe give to the learningalgorithm — andthe test set which we usefor
computingthe error. The error we reportwould be the fraction of the examplesin the testseton which
the learningalgorithm’s hypothesispredictswrongly. Typically two-thirds of the datamight go into the
training setanda third into the testset,to give areasonabléradeof onthe accurag of the hypothesisand
theaccurayg of thereportederror.

In mary situationsthe datajustisn't plentiful enoughto allow this. U S Presidentiaklectionswould
beagoodexample:It's notasif we cango outandgenerataew electionssowe’re stuckwith the handful
we have. If wewantto applyalearningalgorithmto pastpolling dataandtheir effect onthefinal result,we
wantto useall thedatawe canfind. Machinelearninghasproposedeveraltechniquedor bothusingall the
dataandgettinga closeestimateof the error, but they're beyondthe scopeof this suney.

Ethics Obviously ary time you dealwith personalinformation, ethical considerationsrise. Databases
often include sensitve information that shouldnt be released. Social Security numbersare just one of
seseral piecesof datathat one canuseto gain accesdo a persons identity, which you don't wantto get
aroundtoo much.

Lessoblviously, dataminersalsoneedto be carefulto avoid discrimination. For example,a bankthat
intendsto usedatamining to determinewhetherto apprwe loansshouldthink twice beforeincludingrace
or genderasoneof the attributesgivento the learningalgorithm. Even zip codesshouldprobablynot go
into thelearningalgorithm,asimplicit discriminationcanarisedueto communitieswith a particularlyhigh
densityof onerace.

For theseapplicationsthe datamining practitionershouldreview the generatedypothesigo look for
unethicalor illegal discrimination. Algorithms that generataneaningfulhypothesiqlike linear regression
or ID3, but notnearest-neighbaearchreparticularlyusefulfor suchapplicationghatneedhumanreview
attheend.

1.4 Conclusion

We have seena sampleof datamining techniqgues— linear regression nearest-neighbasearch,and ID3
— andotherissueghatdatamining practitionersnustheed.Thetopic of datamining is rich andjust now
becomingawidely appliedfield. We couldeasilyspenda completesemestestudyingit — it involvesmary
interestingapplicationsof mathematicso this goal of dataanalysis.I’d personallylove to spendmoretime
onit — but | alsoknow what's to come,andit’s every bit asintriguing!



Chapter 2

Neural networks

Oneapproacho learningis to try to simulatethe humanbrainin the computer To dothis, we needto know
roughlyhow abrainworks.

A brainneuron(seeFigure2.1)is a cell with two significantpieces:somedendrites, which canreceve
impulsesandanaxon, which cansendimpulses.Whenthe dendriteseceive enoughimpulsesthe neuron
becomesxcited and sendsan impulsedown the axon. In the brain, this axonis next to other neurons’
dendrites.Theseneuronsreceve the impulseand may themselesbecomeexcited, propagatinghe signal
further This connectiorbetweeranaxonanda dendriteis a synapse

Over time, the connectiondetweenaxonsanddendriteschange and so the brain “learns” asthe con-
ditions underwhich neuronsbecomeexcited change.How exactly neuronsmap onto conceptsand how
the changingof synapsesepresents&n actualchangein knowledge,remainsa very difficult questionfor
psychologistandbiologists.

2.1 Perceptron

Using whatwe know abouta neuron,though,it’s easyto build a mechanisnthat approximateone. The
simplestattemptat this is calledthe perceptron. Although the perceptrorisn't too usefulasa learning
techniqueon its own, it's worth studyingdueto its role in artificial neuralnetworks (ANNSs), which we’ll
investigatdn Section2.2.

2.1.1 The perceptron algorithm

The perceptrorhasa numberof inputscorrespondingo the axonsof otherneuronsWe'll call theseinputs
z; for: =1,...,n (wheren is thenumberof inputs).It alsohasaweightw; for eachinput (corresponding
to thesynapses)lt becomesxcitedwheneer

n
Zwixi >0.
=1

Whenit is excited, it outputsl, andat othertimesit outputs—1. The perceptrorcanoutputonly thesetwo
values.

Let usreturnto classifyingirises. Aswith linear regression,we’ll add a constant-onettribute to
give addedflexibility to the hypothesisWe’ll alsomale thelabel numericby labelingan examplel
if it is versicolorand —1 if it is not. Figure 2.2 containsthe datawe’ll use
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dendrites

nucleus

Figure2.1: A depictionof a humanneuron.

constant sepal sepal petal petal | isspecies
one length width length width | versicolor
Iris A 1 4.7 3.2 1.3 0.2 -1
Iris B 1 6.1 2.8 4.7 1.2 1
Iris C 1 5.6 3.0 4.1 1.3 1
Iris D 1 5.8 2.7 5.1 1.9 -1
Iris E 1 6.5 3.2 5.1 2.0 -1

Figure2.2: A prediction-from-gamplesproblemof Iris classification.
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We'll chooserandomweightswith which to begin the perception. Sayour percepton begins
with theweightsw; = 1, wy = 0, wg = 0, ws = 0, ws = 1. For thefirst prediction, we needto
computenvhether

5
> wigi=1-1+0-47+0-324+0-1.34+1-02=12

i=1
exceedd). Sinceit does the perception predictsthat this examples label will bel.

To learn, a perceptrormustadaptover time by changingits weightsw; over time to more accurately
matchwhathappensA perceptromormally startswith randomweights.But eachtime it makesa mistale
by predictingl whenthe correctanswetis —1, we changeall weightsasfollows.

W; <— W; — T4

Herer representshe learning rate, which shouldbe chosernto be somesmall numberlike 0.05. (If you
chooser toolarge, theperceptromayerraticallyoscillateratherthansettledown to somethingneaningful.)

In our example wejust predictedthat Iris A's labelwouldbe 1 whenin factthe correctlabelis —1
(accodingto Figure 2.2). Sowe’ll updatetheweights.

wy—wy—rx;=1-0.05-1 = 0.95
wy +— wyg — 122 =0—0.05-4.7=-0.24
wg < w3 —rxg =0-—0.05-3.2=—-0.16
wy < wy — 124 =0—0.05-1.3 =-0.07
ws < ws —res =1—-0.05-0.2=0.99

Theseare theweightswe’ll usefor the next training example
Similarly, if the perceptrompredicts—1 whentheansweiis 1, we changeheweightsagain.

w; — w; +re;
To computehe predictionfor Iris B, we determinenvhether

5
> wiz; =0.95- 1+ (—0.24) - 6.1 + (—0.16) - 2.8 + (—0.07) - 4.7+ 0.99 - 1.2 = —0.05
i=1

exceedd). Sinceit doesnot, the percepton predictsthatlris B is labeled—1.
Thisis wrong: Accoding to Figure 2.2, the correctlabel for Iris B is 1. Sowe’ll updatethe
weights.
wi —wy+rx;= 095+0.056-1 = 1.00
W — wo +rxe = —0.24 +0.05-6.1 = 0.07
w3 < w3 +rzxg = —0.16 4+ 0.05 - 2.8 = —0.02
wy — wyq +r24 = —0.07+0.05-4.7=0.17
ws — ws +rzs = 0.99+0.05-1.2= 1.05

Theseare theweightswe’ll usefor the next training example

Let me make an intuitive agumentfor why this training rule makes sense. Say we get an example
wherethe perceptronpredicts1 whenthe answeris —1. In this case,eachinput contrituted w;z; to a
total that endedup being positive (and so the perceptrorngot improperly excited). After the training, the
new weightis w; — rz;, andsoif the perceptrorsav the sameexampleagain,this input would contritute
(w; — rz;)x; = wiz; — ro2. Sincer is positve, andsincez? mustbe positive regardlesof z;’s value,
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this contrikution is smallerthanbefore. Thusif we repeatthe sameexampleimmediately the sumwill be
smallerthanbefore— andhencecloserto beinglabeled—1 correctly (The samdine of agumentapplies
whentheperceptrorpredicts—1 whentheanswelis 1.)

Theperceptroralgorithmwill iterateover andover throughthetrainingexamplesuntil eitherit predicts
all trainingexamplescorrectlyor until somebodydecidest’ s time to stop.

To train the perception on theirises, we'd go through the examplesseveral times. Thefollowing
table demonstateshowthe weightschange while goingthroughall the exampleghreetimesover.
irs | Y, wizi  wy woy w3 Wy ws
1.20 | 0.95 —-0.24 —-0.16 —0.07 0.99
—0.05 | 1.00 0.07 —0.02 0.17 1.05
3.39 | 1.00 0.07 —-0.02 0.17 1.05
4211095 -0.22 -0.16 —0.08 0.96
0.50 | 0.90 -0.55 —-0.32 -0.34 0.86
—294 1090 -0.55 -0.32 —-0.34 0.86
-3.88 1095 -0.24 -0.18 -0.10 0.92
—0.16 | 1.00 0.04 —-0.03 0.10 0.98
3.54 1095 -0.25 -0.16 -0.15 0.89
—-0.211]095 -0.25 -0.16 —-0.15 0.89
—-0.76 | 0.95 -0.25 —-0.16 —0.15 0.89
—0.69 | 1.00 0.05 —0.02 0.08 0.95
2.80 | 1.00 0.06 —0.02 0.08 0.95
347 1 095 -0.24 -0.16 -0.17 0.85
—-0.27 {095 -0.24 -0.16 —-0.17 0.85
Atfirstglance thislooksquitenice Onthefirstpassthroughtheexamplesthe perception classified
only 1 of theb flowers correctly Onthesecondpassi,t got2 correct. Andonthethird pass,t got3
correct.

If you continueto seehow it improves,though,the percepton doesnt label 4 of the flowers
correct until 34 timesthrough the training set. It finally getsall 5 flowels right on the 1, 358th
iteration through the examples. (The training rate doesnt affect this too mud: Increasingthe
training rateevenquitea bit doesnt speedt up mud, anddeceasingtherateonly slowsit a little.)

Incidentally after goingthroughall theseiterationsusingr = 0.05, thefinal weightswouldbe
wy = —1.80, wy = —0.30, w3 = —0.19, wy = 4.65, andws = —11.56.

mMOoOOW>»MUOO0O®m®>»MOO0®T>

2.1.2 Analysis

Althoughtheapproachearevery different,it’ sinstructive to compardinearregressiorwith theperceptron.
Their predictiontechniquesreidentical: They have a setof weights,andthey predictaccordingio whether
theweightedsumof theattributesexceedsathreshold.

We know thatlinearregressiorhasa strongmathematicafoundation,andwe know thatthe perceptron
hypothesisisn't ary more powerful than that usedby linear regression. So why would you ever usea
perceptroninstead?

You wouldnt. | don't know of ary reasorto usea single-perceptropredictor whenyou couldjustas
easilydo linearregression.Perceptronsreeasietto program,sure,andeasierto understandBut they take
alot morecomputatiorto getthesameansweyif you're lucky enoughto getananswer (Perceptronarent
evenguaranteetb convergeto asingleanswerunlesgheres ahyperplandghatseparatethe dataperfectly)

Sowhat’s the point of studyingperceptrons@hey’re inspiredby humanbiology, andthe humanbrain
is the bestlearningdevice known to humankind.But we needto keepin mind that,thoughthe humanbrain
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input hidden output
nodes nodes node

Figure2.3: An artificial neuralnetwork.

is extraordinarilypowerful, eachindividual neuronis relatively worthless.To getgoodperformancewe’re
goingto have to network neurongogether That's whatwe’re goingto look at next, andthat's whenwe’ll
startto seesomedividendsfrom our studyof perceptrons.

Advantages:

e Simpleto understand.
¢ Generatea simple,meaningfulhypothesis.
¢ Inspiredby humanbiology:.
¢ Adaptsto new datasimply.
Disadvantages:

e Thehypothesids a simplelinear combinationof inputs,just like linearregressionput linearregres-
sionhasmuchmoresolid mathematicagrounds.

e Only worksfor predictingyes/novalues.

2.2 Artificial neural networks

Artificial neuralnetworks (ANNSs) arerelatvely complex learningdevices. We'll look first at the overall
architecturethenat theindividual neuronsandfinally at how the network predictsandadaptdor training
examples.

2.2.1 ANN architecture

Figure 2.3 picturesthe layoutof one ANN. This particularnetwork hasthreelayers. Thefirst is theinput
layer, includingfour nodesin Figure2.3. Thesenodesarent really neuronsof the network — they justfeed
the attributesof an exampleto the neuronsof the next layer (We'll have four inputswhenwe look at the
irises,aseachiris hasfour attributes.)

Thenext layeris thehidden layer. This layerhasseveralneuronghatshouldadaptto theinput. These
neuronsare meantto procesghe inputsinto somethingmore useful, like detectingparticularfeaturesof a
pictureif theinputsrepresenthe pixels of a picture— but they’ll automaticallyadapt,sowhatthey detect
isn't necessarilyneaningful. Choosingthe right numberof neuronsfor this layeris an art. Figure2.3
includesthreehiddenneuronsin the hiddenlayer, with every input node connectedo every neuron,but
reallyan ANN could have any numberof hiddenneuronsn ary configuration.

Thefinallayeris theoutput layer. It hasanoutputneuronfor eachoutputthatthe ANN shouldproduce.
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threshold function  sigmoid function

Figure2.4: Thethresholdfunctionandthe sigmoidfunction.

Onecouldconcevably have morehiddenlayers,or deleteor addlinks differentfrom thosediagrammed
in Figure2.3, or evenusea morecomple unlayereddesign.But the mostcommondesignis thetwo-layer
network, like that of Figure2.3. In this architecturethereis a layer of somenumberof hiddenneurons,
followed by alayerof somenumberof outputneurons.t haseachinput connectedo eachhiddenneuron,
andit haseachhiddenneuronconnectedo eachoutputneuron. Peopleusually usetwo-layer networks
becausenorecomple designgust haven't provenusefulin mary situations.

In our walk-thoughexampleof howthe ANNworks,we’ll usethefollowing very simpletwo-layer
networkwith two hiddenunitse andb andoneoutputunit o.

a

Asis commonlydonewith ANNs,ead of theneuonsin our networkhasan additionalconstant-
oneinput. We do this insteadof addinga new constantt attribute (aswedid with linear regression
andperceptons),becausahat wouldnt givea constant-onénputinto the outputunit o.

2.2.2 The sigmoid unit

Eachunit of thenetwork is to resemblea neuron.You might hopeto useperceptronshut in factthatdoesnt
work very well. The problemis oneof feedback:ln a neuralnetwork, we mustsometimesattribute errors
in the ANN predictionto mistalesby thehiddenneuronsijf the hiddenneuronsareto changebehaior over
time atall. (If they don't changebehaior, thereisn’t muchpointin having them.)Researcherist haven't
foundagoodway of doingthis with regularperceptrons.

But researcherbavefiguredout a practicalway to do this attribution of error usinga slight modifica-
tion of the perceptrongalleda sigmoid unit. Sigmoidunits producean outputbetweend and1, usinga
slightly differentprocedurdrom before.(Having thelow outputbeing0 is justa minor differencefrom the
perceptronwhoselow outputis —1. We’'ll just rework our training examplelabelsby replacing—1 labels
with 0.)

A sigmoidunit still hasa weightw; for eachinput z;, but it processethe weightedsumslightly differ-
ently, usingthe sigmoid function, definedas

_ 1
C1l4ey’

a(y)

Thisis asmoothedapproximatiorto thethresholdfunctionusedby perceptronsasFigure2.4illustrates.
To make a predictiongiventheinputsz;, the sigmoidunit computesandoutputsthevalue
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Notice thatthis meanst will outputsomenumberbetweer) and1. It will never actuallybe 0 or 1, but it
cangetvery close.

The differencebetweena sigmoid unit and a perceptronis quite small. The only real reasonto use
the sigmoidunit is so thatthe mathematicdbehindthe analysis— which we won’t examine— works out
to shawv thatthe neuralnetwork will approactsomesolution. The advantageof a sigmoidunit is thatits
behaior is smoothandnever flat. This makesmathematicahnalysiseasier sinceit meanswe canalways
improve the situationby climbing oneway or the otheralongthe sigmoidcurve. If the outputis too high,
we'll try to godownhill abit. Toosmall?Go uphill a bit. But we won't getinto the detailsof why it works.

We havethreesigmoidunitsin our architectue: a, b, ando. Thehiddenunitsa andb havefiveinputs
and hencefive weightsead — onefrom ead input node plusthe constant-onenput. The output
unit o hasthree inputsand hencethree weights— one from ead hiddenunit, plus the constant-
oneinput. To begin the network,we initialize ead of theseweightsusingsmall randomvaluesas
follows.

woe = 0.0  weightof constant-onénputinto hiddenunit a

wie = 0.1  weightfor hiddenunit o fromfirstinputnode

we, = —0.1  weightfor hiddenunit  fromsecondnput node

w3, = —0.1  weightfor hiddenunit ¢ fromthird inputnode
wye = 0.0  weightfor hiddenunit o fromfourthinputnode
woey = 0.0  weightof constant-onénputinto hiddenunit b

wip = —0.1  weightfor hiddenunit b fromfirstinputnode
wep = 0.2 weightfor hiddenunit b fromsecondnputnode
W3p 0.1  weightfor hiddenunit b fromthird inputnode
wy = —0.1  weightfor hiddenunit b fromfourthinputnode

wg, = 0.1  weightof constant-onénputinto outputunit o
we, = 0.2 weightfor outputunit o fromhiddenunit a
wp, = —0.1  weightfor outputunit o fromhiddenunit b

2.2.3 Prediction and training

Handlinga singletrainingexampleis athree-steprocessWe’ll seehow to do eachof thesestepsin detail
soon,but heres the overview.

1. Werunthetrainingexamplethroughthe network to seehow it behaes(the predictionstep.
2. We assigran“error” to eachsigmoidunit in thenetwork (theerror attribution step.
3. We updateall theweightsof the network (the weightupdatestep.

Thewhole processds akin to the perceptrortraining processexceptherewe’ll alwaysupdatethe weights.
(Recallthatthe perceptrorweightsgot updatedonly the perceptrorerred.)

Prediction step In a two-layer network like that of Figure 2.3, the predictionstepis straightforvard:
We take the exampleattributes,feedtheminto the hiddensigmoidunits to getthoseunits’ outputvalues,
andthenwe feedthesehiddenunits’ outputsto the outputunits. The outputunits’ outputsarethe ANN’s
prediction.
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Givenlris A, wefirst computethe outputof hiddennodea.

0, = 0o(wog + WiaT1 + WaTo + W3eT3 + WaaTa)
= 0(0.04+0.1-47+(—=0.1)-3.2+ (=0.1)- 1.3+ 0.0 - 0.2)

= 0(0.02) = 55 = 0.5050

1+e0

Similarly, we computehe outputof hiddennodeb.

op = o(woep + wipT1 + wopTo + WapT3 + WapTs)
= 0(0.04(=0.1)-4.740.2-32+0.1-1.3 + (=0.1) - 0.2)

1

Finally, we cancomputehe outputof the outputnodeo.

0o = 0(00p + Wap0q + Whoop) = (0.1 + 0.2 - 0.5050 + (—0.1) - 0.5695)

1

Thusthe computedpredictionfor Iris A is 0.5359.

Error attrib ution step The error attribution stepusesa techniquecalledbackpropagation Whatwe’ll
doistolook attheentirenetwork’s output(madeby the outputlayer)anddetermingheerrorof eachoutput
unit. Thenwe’ll move backward andattribute errorsto the units of the hiddenlayer.

To assignthe error of anoutputunit, saythe desiredoutputfor theunitis ¢,, but theactualoutputmade
by theunit waso,. We computethe errorof thatoutputunit aso,(1 — 0,)(to — 05)-

After we computethe errorsof all outputsunits, we backpropagateo the hiddenlayer Considera
hiddenunit &, whoseweightconnectingt to anoutputunit o is wy,. Moreover, call h's outputo,. (Thisis
theoutputthatwassentforwardto the outputnodewhenmakinga prediction.)Theerrorthatwe’ll attribute
to the hiddennodeh from o is o, (1 — op)whed,. (If therearemultiple outputunits,we’ll sumtheseerrors
over all outputsto getthetotal errorattributedto A.)

In our example the correctanswert, was0 (Iris A is not versicolo), while the networkoutputo,
was0.5359. Thustheerror of unit o (which we’ll representby é,) is

8o = 0o(1 — 0,)(to — 0,) = 0.5359(1 — 0.5359)(0 — .5359) = —0.1333 .

Nowthat we haveerrors attributedto the outputlayer, we cancomputethe error of the hidden
units. We compute),, theerror attributedto hiddenunit a.

0o = 04(1 — 04)Waodo = 0.5050(1 — 0.5050)0.2 - (—0.1333) = —0.0067
Andwe computetheerror 6, of the hiddenunit b.

8, = op(1 — 0p)Wpodo = 0.5359(1 — 0.5359)(—0.1) - (—0.1333) = 0.0033
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Weight update step Thelaststepof handlingthe training exampleis updatingthe weights. We update
all weightsasfollows (boththosegoingfrom inputsto hiddennodes andthosegoingfrom hiddennodesto

outputnodes).

Consideroneinputto a sigmoidunit in the ANN. Sayz is thevaluebeingfed into theinput duringthe
predictionstep,ands is the errorattributedduringtheerrorattribution stepto thesigmoidunit receving the
input. We'll addrdzx to theweightassociatedvith thisinput.

We'll usea learningrater of 0.1 here. Here’showtheweightsare changedfor thistrainingexample

Woq — Wog + 70,1 = 0.0+ 0.1-(-0.0067) -1 = —0.0007
Wig ¢ Wig +T0ex1 = 0.1+ 0.1-(—0.0067) - 4.7 = 0.0969
Waq < Woq + T8qxe2 = —0.1 4 0.1 - (—0.0067) - 3.2 = —0.1021
W3q ¢ W3q + 70gx3 = —0.1 4+ 0.1 - (—0.0067) - 1.2 = —0.1009
Waq  Wag + 78qxs = 0.0+ 0.1-(—0.0067) - 0.2 = —0.0001
wop < wop +70%1 = 0.0+ 0.1-0.0032-1 = 0.0003
wip — wip + 1rdpx1 = —0.14+0.1-0.0032 - 4.7 = —0.0985
wWop < Wop + T0px2 = 0.2+ 0.1-0.0032 - 3.2 = 0.2010
wsp < w3y +1répzry = 0.140.1-0.0032-1.2 = 0.1004
Wyp < Wap + r0pzs = —0.14+0.1-0.0032-0.2 = —0.0999
Woe — Woo + 761 = 0.14+0.1-(-0.1333) -1 = 0.0867
Wao — Wao + 7000 = 0.2+ 0.1-(—0.1333) - 0.5050 = 0.1933

Who — Wpo + 70005 = —0.1 4+ 0.1 - (—0.1333) - 0.5695 = —0.1076

Theseare theweightswe’ll usefor our next training example

Conclusion Thisis all justfor asingletrainingexample.Like in traininga perceptronye’d do all of this
for eachof the examplesin thetraining set. And we’d repeatit severaltimesover. It’s not the sortof thing
you cando by hand thougha computercandoit pretty easilyfor smallnetworks.

Justto demonstate that we've madeprogress,let’'s seewhatthe networkwould predictif we tried
Iris A again. We propagateits attributesthroughthe network.

Oq

Op

Oo

(—0.0007 + 0.0969 - 4.7 + (—0.1021) - 3.2 + (—0.1009) - 1.3 + (—0.0001) - 0.2)
(—0.0032) = 0.4992
(0.0003 + (—0.0985) - 4.7 + 0.2010 - 3.2 + 0.1004 - 1.3 -+ (—0.0999) - 0.2)
0(0.2911) = 0.5724
(
(

o(—

g

(0.0867 4 0.1933 - 0.4992 + (—0.1076) - 0.5724)
(0.1440) = 0.5304

Thusthe computecpredictionfor Iris A is 0.5304, closerto the correctanswerof 0 thanthe previ-
ouslypredicted0.5359. This providessomeevidencethatthe ANN haslearnedsomethinghrough
thistraining process.

2.2.4 Example

ComputationallybackpropagateANNs aresocomple thatit’ s difficult to geta stronghandleon how they
work. It'sinstructve to look at a moreindustrial-strengtlexampleto seehow they might actuallybe used.
Let's considetthefull iris classificatiorexampleof Fisher[Fis36).
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Figure2.5: ANN erroragainstiterationsthroughtrainingset. Thethick line is the averageerrorperevalua-
tion example,andthethin line is the averageerrorpertrainingexample.

Recallthat this setof examplesincludes150 irises, with eachiris having four numericattributesand
a label classifyingit amongone of threespecies.Of the 150irises,we choosea randomsubsetof 100 as
trainingexamplesandtheremaining50 for evaluationpurposes.

We'll modelthis asa two-layer ANN. For eachof the four numericattributes,we’ll include aninput
nodein theinputlayer In thehiddenlayer, we’'ll chooseo usetwo sigmoidunits. And theoutputlayerwill
have a unit for eachof the threepossiblelabels. Whenwe interpretthe outputs,we’ll find the outputunit
emittingthe greatesbutputandinterpretthe ANN to be predictingthe correspondindabel.

We usea learningrate of 0.1. For training purposesa labelis encodedas (0.9,0.1,0.1) for setosa
(0.1,0.9,0.1) for versicolor, or (0.1,0.1,0.9) for virginica We use0.1 and0.9 insteadof 0 and1 because
a sigmoidunit never actuallyreachesan outputof 0 or 1; if we encoddabelsusing0s and1s, theweights
will graduallybecomemoreandmoreextreme.

When we train, we go throughthe 100 training examplesseveral times. It's interestingto seehow
the ANN improvesasthis continues.We’'ll look at the averagesum-of-squaresrror: If the ANN outputs
(01,02, 03) andthedesiredoutpultis (t1, t2, t3), the sum-of-squaresrroris

3

> (i —0:)*.

=1

Thisis anoddquantityto investigate We chooset becaus¢he mathematicdehindthe errorattribution and
weight updateis motivatedby trying to decrease¢he sum-of-squaresrror for ary giventraining example.
(And theresearchersho did thederivationchosét basicallybecauseéhey foundatechniqudor decreasing
it. Thatcircularity— they discoveredthatthe mathematicsvorkedif they just choseto try to minimizethis
peculiarerrorfunction— is the sparkof geniusthatmakesbackpropagatiomwork.)

Figure2.5 graphsthe sum-of-squaresrror on the y-axis andthe numberof iterationsthroughthe data
seton the z-axis. Thethick line is the importantnumber— it’s the averagesum-of-squareerror over the
50 evaluationexamples.Thethin line is the averagesum-of-squaresrrorover the 100trainingexamples.

Sincethe mathematicehindthe backpropagatiompdaterule works with a goal of minimizing the
sum-of-squaresrror, we expectthatthethin line in this graphis constantlydecreasingBut, then,thatim-
provementis on thetrainingexamples:It's notindicative of generalperformanceThethick line represents
performanceon the evaluationexamplesthe ANN never trainson, which is indicative of generalperfor
mance.You canseethatit flattensout after 1,000iterationsthroughthe examplesandthentakesa upward
turn afteranotherl,000iterations,despitecontinuedmprovementon thetrainingexamples.

What's happeningbeyond the 2,000thiterationis overfitting The neuralnetis adaptingto specific
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anomaliesin the training data, not the generalpicture. If we wererunningthe data,we’'d wantto stop
aroundthis point ratherthancontinueonward.

Of coursepnecouldamguethatwhatwereally careaboutis thenumberof evaluationexamplesclassified
correctly nottheaveragesum-of-squaresrror But this supportdhe sameconclusionwe reachedisingthe
sum-of-squaresrror

¢ By the 100thiterationthroughthe examplesthe ANN got47 of the50 correct.
e By the1,000th,it wasgetting49 of 50.
e Aroundthe2,000thiteration,the ANN wasbackto 48 of 50 andremainsthere.

Soit wasprobablybestto stopafterthefirst 1,000iterations.(Thisis just for a singlerun-throughover the
data.Differentrunsgive slightly differentnumbersdueto the smallrandomnumberschoserfor theinitial
weightsin the network.)

It' salsoworthwhilelooking athow thebehaior changesvith differentnumberof hiddenunits. Adding
additionalhiddenunitsin this casekeepsthe picture more or lessthe same— maybeeven slightly worse
than2 units. Only onehiddenunitisn’t powerful enough— the network never getsabore 40 correct.

Typically, peoplefind thattheres somecritical numberof hiddenunits. Below this,the ANN performs
poorly. At the critical numbey it doeswell. And additionalhiddenunits provide only maginal helpif it
helpsatall, attheaddedexpenseof muchmorecomputation.

2.2.5 Analysis

ANNSs have provento beauseful,if complicatedway of learning.They adaptto strangeconceptselatively
well in mary situations.They areoneof the moreimportantresultscomingout of machineearning.
Oneof the compleities with usingANNSs is the numberof parametergou cantweakto work with the
databetter You choosethe representatiof attribute vectorsandlabels,the architectureof the network,
thetrainingrate,andhow mary iterationsthroughthe examplesyouwantto do. The processs muchmore
complicatedhansimply feedingthe datainto alinearregressiorprogram.Theextendedexamplepresented
in this chapteris intendedto illustrate a realisticexample,wherewe hadto malke a variety of decisionsn
orderto getagoodneuralnetwork for predictingiris classification.
Advantages:

e Veryflexible in thetypesof hypothese#t canrepresent.
e Bearssomeresemblancéo avery smallhumanbrain.
e Canadaptto new datawith labels.
Disadvantages:
¢ Verydifficult to interpretthe hypothesisasa simplerule.

¢ Difficult to compute.
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Chapter 3

Reinforcementlearning

Until now we’ve beenworking with superwised learning, wherethe learnergetsinstantfeedbackabout
eachexampleit seesWhile thisis usefulandinterestingjt doesnt modelall typesof learning.

Considerfor example,a mousetrying to learnhow to find cheesén a givenmaze.This doesnt really
fit preciselyinto the supervisedearningmodel. Whetherthe mousechoosedo go forward, right, or left
doesnt resultin immediatefeedback— thereis a whole sequencef actionsthatthe mousemustlearnin
orderto arrive atthe cheeseThereis sensoryfeedbackalongtheway, but no informationaboutwhetherthe
mouseis ontheright track or not.

Thefield of reinforcementlearning looks at how onemight approacha problemlik e this. Two of the
most prominentpotentialapplicationsof reinforcementearningare gameplaying androbot learning. In
both, the learnerhasto make a seriesof actionsbeforeachiaring the goal, with no direct feedbackabout
whetherit’s makingthe correctaction.

3.1 Modeling the environment

Before we can analyzethis problem,we needsomeway of thinking aboutit. One of the most useful
techniquedor thinking aboutthe problemis asa state space Thisis a diagramof how our world operates,
including a state for eachsituationthe learnermight be in, andtransitions representinghon an action
changeghecurrentsituation.

We'll beworkingwith the following very simplestatespacewith justthreestatesga, b, andc.

L @ R Gl R R
L L

Fromead state there are two actions: We canmoveleft (actionL) or wecanmoveright (actionR).
This statespaceis meantto representa very simplemaze— actually just a short hallway — with
four locations. Thecheesaés to theright of ¢; whenthe mousereadesit, the psytologist picksup
themouseand putsit bad at locationa for anothertrial.

We'll think of themouseas startingout at locationc.

Thisis an unrealistically simplestatespace Butwe needit that simpleto keepwithin the scope
of handcalculation.

Thenotionof reward is crucialto the problem,sowe needto incorporatet into our modeltoo. We'll
placea numberon sometransitionsrepresentindhov goodthatactionis. In gameplaying, for example,
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thelastmove beforea gameis won would geta positve numbey while the lastmove beforea gameis lost
would geta negative number

In our example there is a reward everytimethe mousegoesright frome, arriving at thecheese So
we’ll placea reward of 64 onthelong transitionfrom¢ bad to statea.

Our goalasthelearneris to find a stratgly — thatis, a mappingassociatingan actionwith eachstate.
Which stratgy do we want? To comparestratgies, we definediscountedcumulative reward (or justthe
discountedreward) by theinfinite summation

ro + 71+ e + s H e+

In this expressiony; representshereward we receve for the ¢tth stepif we follow the strat@y, while « is a
number(0 < v < 1) thatgivesmoredistantrewardslessemphasisPart of the point of v is to emphasize
rewardsreceved earlier But moreimportantly it keepsthe sumfinite. If we wereto leave out the
altogetherthe cumulatve rewardwould beinfinite.

The stratgy that we want to learnis the stratgy with the maximum discountedreward. Why the
discountedewardandnotsomethingelse?Basically we usethediscountedewardbecausd’s corvenient.
It keepsthe mathematicsimpleto have our goal be a combinationof additionsand multiplications. You
could useanothercriterionfor comparingstratgies, andresearcherbave examinedseveral, but it makes
thingsmorecomplicated.

We'll alwaysusey = £ in this chapter
Theoptimalstrategy for our example youmightguessjs thefollowing.

R
@ R R©
To computethe discountedeward, we think asfollowing Recallthat we decidedto begin in state
c. Our first action, therefore, moving bad to statea, givesusa reward of 64; thusry = 64. Our
secondactiontakesusto stateb, at a reward 1 of 0. Thethird hasa reward r, 0f 0, leavingusat c.
Thefourth hasa reward r3 of 64, leavingusat a. Andthiswill continuein cyclesof 3.

1 1\2 1\3 1\* 1\° 1\
44 (= - ~) 64+ (= - ) 644---
6 +<2)0+(2) 0+(2) 6 +(2) 0+(2> 0+<2) 64+
1\3 1\ 1\?
= 64+ (=) 64+(=) 64+(=) 64+---
6+(2>6+<2>6+(2>6+

= 64+ (1> 64 + (1>264+ (1)364+
B 8 8 8

8 1
= (Z)6a=73-
(7)50=72;

Thus73 7 is the discountedeward of the strategy depictedabove In thelast stepof this computa-
tion, weusedthefactthattheinfinite sum1 + (¥s) + (¥8)2 + - - - is exactly%. Youmayhavelearned
howto do theseinfinite sumsbefor, but if not,dont worry —wewont useit again.

3.2 (@ learning

Findingtheoptimalstratgyy whenwe have amapof themazeis aninterestingoroblem,but it’s notlearning
— it'sjust computationln reality, we won't have amap. Eitherwe won't understana@ur ervironment(like
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the feeblemouse)or the mapwill betoo large to explicitly remembei(like in gameplaying). At ary rate,
we cant justlook atthe maze determinghe optimalstratgy, andthenplay it out.

In this section,we’ll look at @ learning,a specificalgorithmfor learningthe optimal policy developed
in 1989by Watkins[Wat89.

Model Whatwe’ll actuallylearnare a setof numbersderived from the discountedreward. For each
transitionof the statespacewe’ll learna number: For a states andaction A from that state,we’ll use
Q(s, A) to referto this numbey representinghe discountedreward if we startat s, take action 4, and
thenfollow the optimal stratgyy from thereon. (Don’t worry — we won'’t computeQ(s, A) directly in our
algorithm. We cant, sincewe dont have a mapto work with. Instead,we’ll graduallyzeroin onto the
correctvaluesof (s, A) througha seriesof trials, andderive our stratgy from that. But understanding)
is key to understanding) learning.)
Here are the exact ) valuesfor our space
Q ‘ a b c
Ll 9% 9% 18%
R|18% 36% 73%
For example weknowQ(c, R) is 73 ¥z becausét representshe discountedreward of going right
from¢ andfollowing the optimal strategy thereafter—that's exactlythe action sequenceve consid-
eredwhenwe computedliscountedeward in Section3.1.
Or considerQ(a, L). Here wewantthe discountedeward of startingin a, goingleft, andthen
following theoptimalstrategy thereafter After our firststepof goingleft, wegeta reward r, of 0 and
are in statea. Thesecondstep(nowfollowing the optimalstrategy) takesusright froma, gettinga
reward r; of 0 andputtingusin stateb. Thethird stepplacesusin ¢ at areward ro of 0. Thefourth
stepplacesusin a at areward r3 of 64. Thefifth stepplacesusin b at a reward r4 of 0. Andsoon.

0+ (%)o+ (%)QO—I- (%)3644- (%)40+ (%>5o+ (%)6644----
_ (%)364—1— (%)664+ (%)964+---

8 + (%)8+ (%)28+ (%)38+---

O

Andthat's whywehave9 ¥ in our tablefor Q(a, L).

The nice thing aboutknowing the Q valuesis that knowing themgivesusthe optimal stratgyy: For a
particularstate,to find the optimal action,we’ll look at the ) valuesfor eachactionstartingat that state,
andthentake the actionassociatedvith the largestof these.Thusthe discountedeward startingat states
is definedby the quantity

max Q(s,A).

Noticethefollowing propertyof the () values:For ary action A takingusfrom states to states’, giving
usanimmediaterewardr, we have

Q(s,4) = r +ymax Q(s', 4) .

Thatis, we get a reward of r immediately followed by the discountedreward of following the optimal
strat@y startingat s’. (We scaledthis discountedeward by v becausave startthe optimal stratgy at the
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secondstepandbeyond, whereaghe discountedeward startingat s’ follows the optimal stratgy from the
first stepon.)

For example Q(b, R) in our exampleis 36 47. Theimmediatereward r is 0 for goingright fromb,
and Q(c, R) is the bestaction starting fromthe new state ¢, havinga discountedeward of 73 .
Usingour formula,wefind that

1 1 4
IA, = — — = — .
r+7n}ExQ(s, ) 0—I—<2) 737 367

Algorithm  We’'ll usethislastobseration,thatQ(s,a) = r + ymax 4 Q(s’, A") to defineour algorithm.

Startwith Q(s, A) = 0 for all statess andactionsA.
repeatindefinitely:

s < currentstate.

A < someactionwe select.

Performaction A.

r < rewardfor performingA.

s' < new stateafterperformingA.

Q(s,A) « r + ymaxy Q(s', A").
endrepeat

This is really quite simple: We bagin by estimatingall @) valuesas(0. Thenwe wanderaroundthe state
spaceandupdatethe () valuesusingour formulaaswe go.

Wk start at statec; saywe chooseto moveright first. We get a reward of 64 andendupin statea.
Accoding to our current Q-value estimatesthe estimateddiscountedeward startingat a is 0, so
weupdateQ(c, R) to be64 + (1%)0 = 64.

Q‘a b ¢
L|I0O 0 O
RO 0 64

Nowsaywe moveto theright again. We geta reward of 0 andendupin stateb. Our estimateof
the discountedeward startingin b, accoding to the current@ values,is 0. Sowe updateQ(a, R)
to be0 + (%)0 = 0 (which wasthevaluewe hadbefoe).

Andif we moveto theright again, we get a reward of 0 andendup in statec. Our estimateof
thediscountedeward startingin ¢, accoding to thecurrent@ values,is 64. SoweupdateQ (b, R)
to be0 + ()64 = 32.

Q ‘ a b ¢

L0 0 O

R0 32 64

We continuedoingthis over timeuntil we're satisfied Here are the next several steps.

s Al r & updateof Q(s, A)
c L]0 b QL) + 0+ (R)32=16
b R0 ¢ QOB,R) + 0+ (%)64=32
c R|64 a Q(c,R) <+ 64+ () 0=64
a R| 0 b QaR)« 0+ (f)32=16
b L|0 a Q0L + 0+(%)16= 8
a L0 a QaL)«+ 0+(H)16= 8

Soafterall thesestepsour final estimate®f the (Q valuesare thefollowing.
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Q ‘ a b ¢

L| 8 8 16

R|16 32 64
Thisisn't too far off the correct answey and if we continuedwanderingwe would get closerand
closerto thecorrect( values.

It doesnt matterhow we chooseto move here. As long aswe occasionallytry out all the possible
transitions any way of makingthis selectionis fine. If youwantedto accumulateewardsasyou learn,you
mighttendto selectmovesthathave higher( values.

In situationswhereyou wantto accumulateeward asyou learn,you have a conflict of interest. The
learnerwill wantto try out actionsthathaven't beentried too often beforein the samestate,to gain more
experiencewith the consequencesBut alsothe learnerwantsto accumulateewardswhenit can. Thisis
known astheissueof exploration vsexploitation— balancingt is aninterestingoroblem.But we'll sidestep
it with Q learning,becausét actuallydoesnt affectwhetherQ) learningworks.

At this point our goal is simply to learnthe optimal stratgy, not to garnerpoints particularly Thus
we canchooseto move however we want. Choosingrandomlyeachstepfrom the available actions,for
example,isn’'t abadidea.

Analysis Theneatthing about() learningis thatit works,thoughthealgorithmis very simple.Moreover,
it workswithout constructinganexplicit mapof the statespacewhichis importantfrom a practicalpoint of
view, sincein practicethe mapcangetvery complicated But () learninghassomeproblemsthatareworth
pointingout.

e Thealgorithmdoesnt work well in a nondeterministiavorld. Often,anactiondoesnt alwayshave
the sameconsequenceslhis is olviously truein gameplaying, wheneachactionis followed by an
opponens move, which the playercannotpredict. It's alsotrue in robotlearning,asthe realworld
oftendoesnt behae exactly aspredicted.For example,arobotbuilding a tower of blocksmay find
thata gustof wind blows the tower over unexpectedly

The @ learningalgorithmwe've seenforgetseverythingthat’s happenedeforewhenit’'s performed
the actionandreplacest with the new obseration. Thatworksfine in a perfectnonrandomworld,
whenevery actioninvariablyleadsto the samesituation,but notin morerealisticsituations.

e Thealgorithmlearnsmoreslowly thanwe might hope. Whatwill happenis thateachtime through
the maze,the algorithmextendsits knowledgeone stepbackward. In our example,we learnedthat
maoving from ¢ to ¢ wasa goodmove thefirst time; thenthe next time throughthe mazewe learned
to move from b to ¢; andthenthe next time throughwe learnedto move from a to 5. But we should
have figuredout earlierthatit is agoodideato mave from a to b.

e For problemsof arealisticsize,hopingto go throughall possiblestatess simply not realistic. In a
chesgyame for example therearesomary stateshatwe cannever hopeto visit every singlepossible
boardthatmight shav up duringa game.

In thenext two sectionswe’ll seewaysof refining@ learningto addresshefirst two issues.Thethird issue,
however, is moreendemico the overall modelthata simplepatchisn’t goingto sole.

This problemis oneof genealizing from whatwe have learned.Thatis, we needto someha recognize
thattwo statesaresimilar andsoif anactionis goodfor one,a similar actionis goodfor the other This
is somethingthatwill be more domain-specifi¢thanour state-spacabstractiorallows: In the statespace
abstractiongachstateis completelyincomparabldo the rest. We've abstractedway all detailsaboutthe
characteristicsf the state.
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Peopledon't really have a goodway of handlingthisin general.We’'ll look atthe two mostprominent
successfupplicationf reinforcementearningtechniquesitthecloseof thischapter In bothapplications,
they facedthis problemof not beingableto hopeto visit all possiblestatesandwe’ll seehow they resohe
it in their particularsituations.

3.3 Nondeterministic worlds

To addressiondeterministicconsequencesf actions,we’ll be lessextremein our updateof (). Before,

we changed))(s, A) tor + v max 4 Q(s, A’), forgettingeverythingwe hadlearnedaboutQ(s, A) before.

Insteadwhatwe’ll dois avelage the currentvalueof Q(s, A) with this new obseration.
Thealgorithmproceedsn the sameway, but we’ll alterthe updaterule to thefollowing.

Qs,4) (1= a)Q(s A) + a (1 + max Q(s', 4

Here,«a (which we choosefrom 0 < o < 1) is a parametethattells ushonv muchweightto give the
new obserationandhowv muchweightto give to the valuewe wererememberingearlier If « is small,this
indicateghatwe wantto give lots of weightto old valuesof ), sothatwe improve our estimateonly slowly
overtime. If « is large,we wantto give moreweightto the new values,sothatwe learnmorerapidly atthe
expenseof therisk of overemphasizingareconsequencesf our actions.

In practice,you wantto usea large a at the beginningwhenthe Q valuesdon't reflectary experience
(andsoyou might aswell adaptquickly), andyou wantto reducea asyou gain moreexperience.A very
sensiblechoicechangesy with eachactionto 1/(1 + v), wherewv representshe numberof timeswe've
performedhe actionfrom thatparticularstatepreviously.

In our world, we don't needthis alternativeformulationbecauseour world is deterministic. Thus

we mightaswell usea = 1, which givesusthe samealgorithmwe usedbefoe. Butif weinstead

choosex to be1/(1 + v), weendup with thefollowing table after the samesequencef actionswe

performedbefoe.
Q ‘ a b ¢
L4 4 16
R|8 32 64

We havent gottenas closeto the correct () valueshere as we did in Scetion3.2. But, then,we
intentionallymodifiedour original algorithmto adaptmore slowly.

3.4 Fastadaptation

A more radical changeis trying to make the algorithm so that eachreward is immediately propagated
backward to actionsperformedin the past. The ideahereis to speedup the learning process,so less
wanderings required.

Here’s onesolution. Whatwe’re going to do is to maintainan h-valuefor eachtransitionof the state
space.This h-valuecontinuallydecaysatarateof v\ aftereachaction. The A parametefwith 0 < A < 1)
controlshow mucheffecta futurereward hason a currentaction.

The h-valuesstartout at 0, but eachtime we usea transitionwe’ll addoneto its h-value. But it will
rapidly decaybackto zero(atarateof y\ pertime step)asfuture actionsareperformed.

Startwith Q(s, A) = 0 andh(s, A) = 0 for all statess andactionsA.
repeatindefinitely:
s < currentstate.
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A + someactionwe select.

Performaction A.

r < rewardfor performingA.

s' < new stateafterperformingA.

d  —Q(s, A) +r+ymaxy Q(s', A").

h(s,A) < h(s, A) + 1.

for eachstates” andeachactionA”, do:
Q(S",AH) s Q(S”,AH) +a6h(s",A”).
h(s", A") < yAh(s", A").

endfor

endrepeat

We'll usea = 1,y = %, and\ = Y.

Thingsstart out the same If we begin at ¢ and move right, we get a reward of 64 andgointo
statea, whoseestimatedliscountedeward is 0. Sowe’ll compute’ as —0 + 64 + (%)0 = 64, and
we’ll add1 to h(c, R).

Now whenwe go throughead s” and A”, the only non-zeo h-valueis h(c, R) = 1. Sothe
only Q-valuethat changesis Q(c, R), which changesto 0 + adl = 64. Eac h-value decaysby
yA = () (1) = Ya. Thusafter our firstactionthe Q- and h-valuesare asfollows.

Q‘a b ¢ h‘a b ¢
L{0 0 O L{0O O O
R|0 0 64 R0 0 Y

Our secondaction givesus a reward of 0 and placesusin stateb, whoseestimatedliscounted
reward is 0. We computel as—0 + 0 + (%2)0 = 0. Sinced = 0, no Q-valueswill changg, thoughof
coursethe h-valuesdecayby a factor of Y4 again.

Q‘ab c h‘a b ¢
L|I0O 0 O L0 0 O
R0 0 64 R| % 0 Ye

Sofar the -valuesare just asin our first example But for the third action, whenwe move
right fromb to earna reward of 0 andendup in statec, whee the estimateddiscountedeward is
64, we'll seesomethinglifferent. Thistime we compute to be —0 + 0 + (}2)64 = 32. Asbefoe,
Q(b, R) will changeto 0 + 32 - 1 = 32. Butalso,sinceh(a, R) = %, thevalueQ(a, R) changesto
0+ 32 - Y4 = 8. Moreover, Q(c, R) changesto 64 + 32 - 16 = 66. Sowe nowhavethe following

Q ‘ a b ¢ h ‘ a b ¢
Lo 0 o0 LIo 0 0
R|8 32 66 R| e Y% Yea

Whats happenechere is that we got an estimateduture reward for moving into ¢, and this new
algorithmhaspropagatedthis future reward to our pastactionsalso—a fractionof it to theaction
of moving right froma, andevena fractionto the actionof moving right frome.
Were we to continuethroughthe entire examplewe’ve beenusing we'd find that the final @-

valuesare asfollows.

Q ‘ a b c

L| 944 10.75 15.59

R|19.47 3424 T71.11
Thesehavegottenvery closeto the exact valueswith what's really a pretty shorttime wandering
throughthe statespace
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3.5 TD learning

Temporal differencelearning is an alternatve algorithmto @) learningoriginally proposedoy Suttonin
1988[Sut89.

Actually, it's closelyrelatedto (@ learning.It's evenalittle simpler Thedifferenceis that, while the
learningalgorithmlearnsthe discountedeward beginning at eachtransitionin the statespace,TD learning
learnsthediscountedewardV (s) for eachstates of the statespace Everythingelseremainshe same.

Thus,thesimplestversionof TD learning(analogouso the () learningalgorithmof Section3.2) revises
theupdaterule to thefollowing.

V(s) < r+~V(s")

Like @ learning,TD learningcanbe modifiedasin Sections3.3and3.4.

In situationswherethe statespaceis known (asin gameplaying), TD learningmakessense.Because
you'relearningavaluefor eachstate noteachpossibleactionfrom eachstate you have mary fewernumbers
to learn. Thuslessexplorationis requiredto find a goodsolution.

But in situationswherethe statespaceis unknavn, TD learningis impractical. After all, whatwe're
afteris learningthe optimalactionfrom eachstateof the space To figure outthe optimalactionfor s given
thespaces V-valueswe would look througheachpossibleactionfrom s, take therewardr andsubsequent
states’ for thataction,andsaythatthe optimalactionis theactionfor whichr + vV (s') is largest. But if
we don't understandhe statespacewe dont know r or s’, andsowe cant performthis computation.

ThusTD learningis frequentlysuperiorto ( learningwhenwe know the statespaceandTD learning
is inappropriataf we don'.

3.6 Applications

As we saw in Section3.2, ( learning— and,indeed the whole state-spacenodel— hasa fatal problem:
Theworld is justtoo complicatedor usto hopeto go throughmostreal-life statespaces.

Muchof currentresearclaroundreinforcementearninginvolveslooking atpracticalapplicationslemon-
stratingtechniquegor gettingaroundthis difficulty of tacklinghugestatespacesResultshave beenmixed.
We'll look attwo of the moresignificantsuccesses.

3.6.1 TD-Gammon

Thefirst big reinforcementearningsuccesss certainly TD-Gammon,a backgammon-playingystemde-
velopedby Tesaurdn theearly 19905 [Tes94.

Althoughwe’re notgoingto look atthe specificsof backgammotmere theimportantthing to know that
thereis a setof piecesyou aretrying to move to goal positions. Eachturn, the playerrolls a pair of dice
andmustchoosefrom a setof movesdictatedby thatroll. Conventionalgame-playingechniquesave not
appliedwell to Backgammonasthe numberof possiblemovesin eachturnis unusuallylarge (about400,
versusabout40 for chess)gespeciallyif you mustconsiderall possibledicerolls.

TesaurousedTD learning,but the numberof statesn backgammorin too overwhelmingto consider
Ratherthantalulate all possiblestates, TD-Gammonemplg/ed a neuralnetwork to approximatethe V-
valuesfor eachstateof the network. In thefirst version(version0.0),the neuralnetwork had198 inputunits
for representinghecurrentboard,40 hiddenunits,andasingleoutputto representheestimateor theinput
boards V-value.

To choosea move, therefore,you hadonly to try eachof the possiblemaovesand seewhich resulting
boardstategivesthe greatesti -value. Thenyou take that move. Generallythe reward will be 0, asyou
don' receve arewardor penaltyuntil thegameis won or lost. Fromhereyou cantrain the network, justas
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is donein regularTD learning.(Tesaurausedthe TD equivalentof the Q-learningalgorithmof Section2.4,
usingA = 0.7.)

By training the network on 200,000gamesagainstitself, Tesaurdfound that TD-Gammonperformed
aboutaswell asoneof thebestcomputebackgammoiplayersof thetime, Neurogammoifalsoby Tesauro).
This wasshocking,as Neurogammorhad beenwritten specificallyto play backgammonwith much spe-
cializedknowledgebuilt into it, while TD-Gammonhadnearlyno backgammorknowledgeoutsideof the
rules.

Encouragedby thiswork, TesauradevelopedTD-Gammonl.0. Thebasicchangdor thiswasto change
the inputsto the neuralnetwork to represenmore complex conceptsthat backgammommastersfeel are
importantthings abouta board state— whethercrucial positionsare blocked, how close piecesare to
winning, etc. In otherwords,this new versionincorporatedsomeof the advancedbackgammonheorythat
Neurogammorhad. TD-Gammonl.0 had 80 hiddenunits andtrainedon itself with 300,000games. It
playedcompetitvely with humanchampionsbut not ata level whereit mightwin aworld championship.

Subsequentersionsof TD-Gammonrhave madethe programlook morethanonemave in adwance tak-
ing someadwantageof classicalminimaxsearch.The currentversion,TD-Gammon3.1,is widely regarded
asrankingamongthe bestbackgammorplayersin the world (humanor computer),and very capableof
winning aworld championshipf admitted.

Peoplehave tried duplicatingthis work in othergamesespeciallychessandgo. The resultsof these
attemptshave beenencouragindut not asnotevorthy as TD-Gammon: The programdearnto play well,
but not nearthelevel of humanchampions.

3.6.2 Elevator scheduling

Schedulingelevatorsin a building is an importantproblem. Researcherfke it becausat’s simple and
practical. Unfortunately they don't getto seetheir work put into practice— or at leastthey don't know
aboutit: Elevatormanugcturergealouslyprotectthe schedulingalgorithmsthey use,asthisis partof their
competitve edgeover otherelevatormanufcturers.

Crites and Barto, however, can pride themseles on having one of the bestpublishedalgorithmsfor
schedulingelevators[CB96]. (We dont have a way of comparingto the manufcturers’unpublishedhlgo-
rithms.) Moreover, theirtechniqueusesreinforcementearning.

In their study CritesandBarto concentrate@n schedulingour elevatorsin aten-storybuilding during
the 5:00 rush (whennearlyall passengerwish to go to the lobby to leave for home). In their simulated
system eachof the four elevatorshaswithin it tenbuttons,andeachfloor hasanup anda down button on
it. At ary pointin time, eachelevator hasa location, direction,and speed;and eachbutton pressedn a
floor hasa “waiting time” associateavith it, sayinghow long it hasbeensincethe prospeciie passenger
requeste@nelevator.

Thisis aworld with mary states CritesandBartoconseratively estimatethatit hasatleast10?? states,
far morethanwe couldvisit in the courseof learninghow to behae in eachstate.

An actionin this statespacegivesthe behaior of the elevators. An elevator may decideto go up, go
down, or stayin its currentlocationto unloador loadpassengerd he penaltyfor anactioncanbecomputed
asthe sumsof the squareof the waiting time for any passengerkadedby the elevatorsduring the time
step. (We squarethe waiting time becauseealisticallywe wantto give passengerasho have beenwaiting
quitelongalargeradwantage.)

Noticethatoneaspecif this scenarids thatwe cant predictthe resultof anaction,becauseve cant
predictwherepotentialpassengerare going to appearequestingan elevator  Thus, () learningis more
applicablehanTD learningfor this problem.

But we still have the problemof all thosestateshatwe cant visit thoroughlyduringtraining. Critesand
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Bartousedseveraltechniqueso bringthe statespacedown to amorereasonablével. Onethingthey did to
simplify the problemwasto addadditionalconstraintson possibleactions— constraintghatyou probably
needanyway. For example,an elevator cannotpassafloor if a passengewithin the elevator hasrequested
astoponthatfloor. Nor cananelevatorreversedirectionif a passengenasrequested floor in the current
direction. Theseconstraintseducethe numberof decisionghatthe elevatorshave to male.

Despitetheseconstraintselevatorsmuststill malke somechoices.Namely whenan elevatorreachesa
floor whereapassengeds waiting, shouldit stop?(Youmayexpectit to alwaysstopfor potentialpassengers,
but if anotherelevatoris stoppingtherearyway becausat is carryinga passengethere,why wastetime?
Or perhapghe elevatorwantsdesperatelyo reacha personwho hasbeenwaiting longer)

CritesandBarto decidedto make the elevatorsmake their decisionandependently This will hurt per
formance asmorecentralizedcontrolwill allow elevatorsto bandtogetherto tackletheir passengermnore
effectively. But makingthemindependensimplifiesthe setof actionsfrom which the learningalgorithm
mustchoose&o justtwo: Whenwe reacha waiting passengedo we stopor not?

But therearestill lots of stateso consider— too mary to hopeto apply @ learningdirectly. Thefinal
techniquethat CritesandBarto employ is to usea neuralnetwork to approximatehe ) values,similar to
how Tesauraiseda neuralnetwork to approximaté/ valuesin TD learning.

Recallthat CritesandBarto have their elevatorsmalke decisionsndependentlyso eachnetwork com-
putesthe Q-valuefor only two actions.After muchexperimentationthey settledon a network of 47 input
unitsand2 outputunits. Thetwo outputunitsrepresenthetwo possibleactions.

The 47 input unitsrepresentifferentcharacteristicef the currentstate,andit is herethatyou cansee
how CritesandBarto musthave tried a lot of thingsbeforesettlingdowvn onthese47 units. 18 of the units
representethe buttonsin the hallways— oneunit for eachfloor representingvhethera dovn passengeis
still pending,andoneunit for eachfloor representindnow long thatdown passengehnasbeenpending.16
unitsrepresentethe currentlocationanddirectionof the elevatorin question.Another10 unitssaywhich
floors have the otherelevators. Oneunit sayswhetherthe elevator in questionis at the highestfloor with
an elevatorrequestponeunit sayswhetherthe elevatorin questionis at the floor with the oldestunsatisfied
elevatorrequestandthefinal unitis a constantt input.

They trainedtheir network in asimulatedsystemandcomparedheir resultswith thoseof mary otheral-
gorithms.Whatthey foundis thatthe stratgyy learnedby (@ learningandtheir neuralnetwork outperformed
the previousad hocalgorithmsdesignedy humangor elevatorscheduling.This doesnt necessarilymply
that @ learningis the bestalgorithmfor elevator scheduling but it doesillustrate a situationwhereit has
provensuccessful.
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