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Chapter 0

Intr oduction

Machine learning attemptsto tell how to automaticallyfind a goodpredictorbasedon pastexperiences.
Although you might argue that machinelearninghasbeenaroundas long asstatisticshas,it really only
becamea separatetopic in the 1990’s. It draws its inspiration from a variety of academicdisciplines,
includingcomputerscience,statistics,biology, andpsychology.

In thisclasswe’regoingto look atsomeof thesignificantresultsfrom machinelearning.Onegoalis to
learnsomeof thetechniquesof machinelearning,but also,justassignificant,wearegoingto getaglimpse
of the researchfront andthe sort of approachesresearchershave taken toward this very nebulousgoal of
automaticallyfindingpredictors.

Researchershaveapproachedthegeneralgoalof machinelearningfrom avarietyof approaches.Before
we delve into detailsabout these,let’s do a generaloverview of machinelearningresearch. This also
constitutessomethingof anoutlineof this text: We’ll spendachapteron eachof thefollowing topics.

0.1 Data mining

With the arrival of computingin all facetsof day-to-daybusiness,the amountof accessibledatahasex-
ploded.Employerskeepinformationaboutemployees,businesseskeepinformationaboutcustomers,hos-
pitals keepinformationaboutpatients,factoriesget informationaboutinstrumentperformance,scientists
collectinformationaboutthenaturalworld — andit’s all storedin computers,readyto accessin mass.

Data mining is graduallyproving itself asan importanttool for peoplewho wish to analyzeall this
datafor patterns. One of the most famousexamplesis from the late 1970s,when datamining proved
itself aspotentiallyimportantfor bothscientificandcommercialpurposesonaparticulartestapplicationof
diagnosingdiseasesin soybeanplants[MC80].

First the researchersfound an expert, who they interviewed for a list of rulesabouthow to diagnose
diseasesin a soybeanplant. Thenthey collectedabout680diseasedsoybeanplantsanddeterminedabout
35piecesof dataoneachcase(suchasthemonththeplantwasfoundto haveadisease,theamountof recent
precipitation,thesizeof theplant’s seeds,theconditionof its roots). They handedtheplantsto theexpert
to diagnose,andthenthey performedsomedatamining techniquesto look for rulespredictingthedisease
basedon thecharacteristicsthey measured.

What they found is that the rulesthe expert gave during the interview wereaccurateonly 70% of the
time, while the rulesdiscoveredthroughdatamining wereaccurate97.5%of the time. Moreover, after
revealingtheserulesto theexpert,theexpertreportedlywasimpressedenoughto adoptsomeof therulesin
placeof theonesgivenduringtheinterview!

In this text, we’ll seea few of themoreimportantmachinelearningtechniquesusedin datamining, as



2 Introduction

well assurroundingissuesthatapplyregardlessof thelearningalgorithm.We’ll emergefrom this familiar
with muchof theestablishedmachinelearningresultsandpreparedto studylesspolishedresearch.

0.2 Neural networks

Cognitive scienceaimsto understandhow thehumanbrainworks.Oneimportantpartof cognitive science
involves simulatingmodelsof the humanbrain on a computerto learn more about the model and also
potentiallyto instill additionalintelligenceinto thecomputer.

Thoughscientistsarefar from understandingthebrain,machinelearninghasalreadyreapedthereward
of artificial neural networks(ANNs). ANNs are deployed in a variety of situations. One of the more
impressive is ALVINN, asystemthatusesanANN to steeracaronahighway [Pom93]. ALVINN consists
of anarrayof camerasonthecar, whoseinputsarefed into asmallANN whoseoutputscontrolthesteering
wheel.Thesystemhasbeentestedgoingup to 70milesperhourover90milesof apublicdividedhighway
(with othervehicleson theroad).

Herewe’ll look briefly at humanneuronsandhow artificial neuronsmodeltheir behavior. Thenwe’ll
seehow they might benetworkedtogetherto form anartificial neuralnetwork thatimproveswith training.

0.3 Reinforcementlearning

Throughthis point, we’ll have worked exclusively with systemsthat needimmediatefeedbackfrom their
actionsin orderto learn.This is supervisedlearning, which thoughusefulis a limited goal.

Reinforcement learning (sometimescalledunsupervised learning) refersto a brandof learningsit-
uation wherea machineshouldlearn to behave in situationswherefeedbackis not immediate. This is
especiallyapplicablein roboticssituations,whereyou might hopefor a robotto learnhow to accomplisha
certaintaskin thesamewayadoglearnsa trick, withoutexplicit programming.

Probablythe mostfamoussuccessstory from reinforcementlearningis TD-Gammon,a programthat
learnsto play the gameof Backgammon[Tes95]. TD-Gammonusesa neuralnetwork coupledwith re-
inforcementlearningtechniques.After playing againstitself for 1.5 million games,the programlearned
enoughto rankamongtheworld’s bestbackgammonplayers(includingbothhumansandcomputers).

Reinforcementlearningis muchmorechallengingthansupervisedlearning,andresearchersstill don’t
haveagoodgraspon it. We’ll seea few of theproposedtechniques,though,andhow they canbeappliedin
situationslike theonethatTD-Gammontackles.

0.4 Artificial life

Finally, artificial life seeksto emulateliving systemswith a computer. Our study of artificial life will
concentrateon geneticalgorithms,wheresystemsloosely basedon evolution are simulatedto seewhat
might evolve. They hopeto evolve very simple behavior, like that of amoebas,thus gaining a greater
understandingof how evolution worksandwhateffectsit has.

In asense,theevolutionaryprocesslearn— thoughusuallytheverbweuseis adapt. If youunderstand-
ing learningasimproving performancebasedonpastexperience,theword learnhasasimilardenotationto
adapt, evenif theconnotationis different.

Geneticalgorithmsappearto bea promisingtechniquefor learningfrom pastexperience,evenoutside
simulationsof pseudo-biological. We’ll look at this technique,andthenwe’ll look at its usein attempting
to evolve simplebehaviors.



Chapter 1

Data mining

Datais abundantin today’s society. Every transaction,every accomplishmentgetsstoredaway somewhere.
Wegetmuchmoredatathanwecouldeverhopeto analyzeby hand.A naturalhopeis to analyzethedataby
computer. Data mining refersto thevarioustasksof analyzingstoreddatafor patterns— seekingclusters,
trends,predictors,andpatternsin amassof storeddata.

For example,many grocerystoresnow have customercards,rewardingfrequentusersof the grocery
storewith discountson particularitems. The storesgives thesecardsto encouragecustomerloyalty and
to collectdata— for, with this cards,they cantracka customerbetweenvisits to thestoreandpotentially
mine thecollecteddatato determinepatternsof customerbehavior. This is usefulfor determiningwhat to
promotethroughadvertisement,shelfplacement,or discounts.

A large bankingcorporationmakesmany decisionsaboutwhetherto accepta loan applicationor not.
On handis a variety of informationabouttheapplicant— age,employmenthistory, salary, credit history
— andaboutthe loan application— amount,purpose,interestrate. Additionally, the bankhasthe same
informationaboutthousandsof pastloans,plus whetherthe loan proved to be a good investmentor not.
Fromthis, thebankwantsto know whetherit shouldmake the loan. Datamining canpotentiallyimprove
theloanacceptanceratewithoutsacrificingon thedefault rate,profitingboththebankandits customers.

1.1 Predicting fr om examples

We’ll emphasizea particulartype of datamining calledpredicting from examples. In this scenario,the
algorithmhasaccessto severaltraining examples, representingthepasthistory. Eachtrainingexampleis a
vectorof valuesfor thedifferentattrib utesmeasured.In our bankingapplication,eachexamplerepresents
a singleloanapplication,representedby a vectorholding thecustomerage,customersalary, loanamount,
andothercharacteristicsof theloanapplication.Eachexamplehasa label, which in thebankingapplication
might bea ratingof how well theloanturnedout.

The learningalgorithmseesall theselabeledexamples,andthenit shouldproducea hypothesis— a
new algorithmthat, given a new vectoras an input, producesa predictionof its label. (That a learning
algorithmproducesanotheralgorithmmaystrike you asodd. But, giventhevarietyof typesof hypotheses
thatlearningalgorithmsproduce,this is thebestwe cando formally.)

In Section1.1,webriefly lookedatsomedataminingresultsfor soybeandiseasediagnosisby Michalski
andChilausky [MC80]. Figure1.1 illustratesa selectionof thedatathey used.(I’ve takenjust sevenof the
680plantsandjust four of the35 attributes.)Therearesix trainingexampleshere,eachwith four attributes
(plantgrowth, stemcondition,leaf-spothalo,andseedmold)anda label(thedisease).Wewould feedthose
into thelearningalgorithm,andit wouldproduceahypothesisthatlabelsany plantwith asupposeddisease.
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plant stem haloon mold on
growth condition leaf spots seed disease

PlantA normal abnormal no no frog eye leaf spot
PlantB abnormal abnormal no no herbicideinjury
PlantC normal normal yes yes downy mildew
PlantD abnormal normal yes yes bacterialpustule
PlantE normal normal yes no bacterialblight
PlantF normal abnormal no no frog eye leaf spot
PlantQ normal normal no yes ???

Figure1.1: A prediction-from-examplesproblemof diagnosingsoybeandiseases.

sepal sepal petal petal
length width length width species

Iris A ����� ���
	 ���
� 
��
	 setosa
Iris B ����� 	��
� ����� ���
	 versicolor
Iris C ���
� ����
 ����� ���
� versicolor
Iris D ���
� 	���� ����� ���
� virginica
Iris E ���
� ���
	 ����� 	���
 virginica
Iris Q ���
� 	���� ���
� ���
	 ???

Figure1.2: A prediction-from-examplesproblemof Iris classification.

PlantQ, representinga new plantwhosediseasewe wantto diagnose,illustrateswhatwe might feedto the
hypothesisto arrive ataprediction.

In thesoybeandata,eachof thefour attributeshasonly two possiblevalues(eithernormalandabnormal,
or yesandno); the full datasethassomeattributeswith morepossiblevalues(the monthfoundcould be
any monthbetweenApril or October;theprecipitationcouldbebelow normal,normal,or above normal).
But eachattributehasjustasmallnumberof possiblevalues.Suchattributesarecalleddiscreteattrib utes.

In somedomains,attributesmaybenumeric instead.A numericattribute hasseveralpossiblevalues,
in a meaningfullinear order. Considerthe classicdatasetcreatedby Fisher, a statisticianworking in the
mid-1930s[Fis36]. Fishermeasuredthesepalsandpetalsof 150differentirises,andlabeledthemwith the
specificspeciesof iris. For illustrationpurposes,we’ll justwork with thefivelabeledexamplesof Figure1.2
andthesingleunlabeledexamplewhoseidentity we wantto predict.

Thesetwo examplesof datasetscomefrom actualdatasets,but they aresimplerthanwhatonenormally
encountersin practice.Normally, datahasmany moreattributesandseveraltimesthenumberof examples.
Moreover, somedatawill bemissing,andattributesareusuallymixedin character— someof themwill be
discrete(likealoanapplicant’s stateof residence)while othersarenumeric(like theloanapplicant’s salary).
But thesethingscomplicatethebasicideas,which is whatwe want to look at here,sowe’ll keepwith the
idealizedexamples.

1.2 Techniques

We’re going to look at threeimportanttechniquesfor datamining. The first two — linear regressionand
nearest-neighborsearch— arebestsuitedfor numericdata.Thelast,ID3, is aimedatdiscretedata.
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Figure1.3: Fitting a line to asetof data.

1.2.1 Linear regression

Linear regressionis oneof theoldestforms of machinelearning. It is a long-establishedstatisticaltech-
niquethatinvolvessimplyfitting a line to somedata.

Single-attribute examples Theeasiestcasefor linearregressionis whentheexampleshave a singlenu-
mericattributeandanumericlabel;we’ll look at thiscasefirst. Saywehave � examples,wheretheattribute
for eachexampleis called ��� , andthelabelfor eachis ��� . Wecanenvision eachexampleasbeingapoint in	 -dimensionalspace,with an � -coordinateof ��� anda � -coordinateof ��� . (SeeFigure1.3(a).)

Linear regressionwould seekthe line ����� �"!$#%�%&(' (specifyingthe prediction ����� � for any given
single-attributeexample )��+* ) thatminimizesthesum-of-squareserror for thetrainingexamples,,-��.0/ �����213�����4�5�6�879�
(SeeFigure1.3(b).)Thequantity : ��� 13�������;�<: is thedistancefrom thevaluepredictedby thehypothesisline
to theactualvalue— theerrorof thehypothesisfor this trainingexample.Squaringthisvaluegivesgreater
emphasisto largererrorsandsavesusdealingwith complicatedabsolutevaluesin themathematics.

For example, wemightwantto predictthepetalwidthof an iris givenits petallengthusingthedata
of Figure 1.2. Here �=/ is ���
� (thepetal lengthof Iris A) and ��/ is 
��
	 . FromIris B, weget � 7 !>�����
and � 7 !?���
	 . Weget similar datafromIris C, Iris D, andIris E. Figure 1.3graphsthepoints.

With a little bit of calculus,it’s not too hard to computethe exact valuesof # and ' that minimize
thesum-of-squareserror. We’ll skip thederivation andjust show the result. Let @� be theaverage� value
( �;A � � � �6BC� ) and @� betheaverage� value( �;A � � � �6BC� ). Theoptimalchoicesfor # and ' are#$! � A � ���D���D�E1F�G@�H@�I A � � 7�KJ 1L�G@� 7LM 'N!O@�P1L#Q@�R�

For the irises, we computethat A � ���S!T	�
��
� and hence @�U!V����
W� , A � ���S!$���
� and hence @�X!���
��	 , A � �4�����N!V�������Y	 , A � � 7� !V��	��
��� . Knowingthese, we compute# to be �5�������Y	Z1Q�P[\����
W�][���
��	W�6B��5��	��
���^1_�`[<����
W� 7 �H!a���
���WB��<
��
���W���Zbc
��d�e�f�g	 and ' to be ���
��	h1F
��d�e�f�g	i[Y����
W�h!j1N
��
���W��� .
Soour hypothesisis that, if thepetallengthis � , thenthepetalwidthwill be
��d�e�f�g	\�k1l�
���W���^�
On Iris Q, with a petal lengthof ���
� , thishypothesiswouldpredicta petalwidth of ���
	�� , not too far
fromtheactualvalueof ���
	 . (Ontheotherhand,thehypothesiswouldpredicta negativepetalwidth
for a veryshortpetal,which is clearlynotappropriate.)
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Multiple-attrib ute examples Wheneachpieceof trainingdatais a vectorof several attributes,theprob-
lem becomesmore complicated. What we’re going to do is to expandthe single-attribute exampleby
expandingthe dimensionsof the space. If eachexamplehasjust two attributes,we could view eachla-
beledexamplein three-dimensionalspace,with an � -coordinatecorrespondingto the first attribute, the� -coordinatecorrespondingto thesecondattribute,andthe m -coordinatecorrespondingto the label. We’d
look for aplane ����� M ����!n#%o��p&_#%qY� thatminimizesthesum-of-squareserror.

For ageneralnumberof attributes r , we’ll view eachlabeledexampleasapoint in �Drs&t�K� -dimensional
space,with a coordinatefor eachattribute,plusa coordinatefor the label. We’ll look for a r -dimensional
hyperplane����� / M � 7 M �<�<� M �2uK�v!>A u�w.0/ # � � � thatminimizesthesum-of-squareserror.

This is slightly different thanthe two-dimensionalcasebecausethis �����+� is forcedto go throughthe
origin �D
 M 
 M �<�<� M 
g� . Forcingthiskeepsthemathematicsprettier. If wewantto beableto learnahyperplane
that doesn’t necessarilygo throughthe origin, we can get aroundthis limitation by simply insertingan
additionalattributeto everyvectorthatis always � (sothat # � � � for thatcoordinateis just theconstant# � ).

For theiris example, we’rein � -dimensionalspace. We’readdingtheextra always-� attribute, giving
us a total of rL!O� attributesin each example, and thenwe havethe label. Thelabel needsto be
numeric,thoughtheiris examplelabelsaren’t. Whatwe’ll do is saythat thelabel is � if thespecies
is versicolorand 
 otherwise. Thusif the predictedvalueis large (at least 
��
� ), the hypothesisis
that theiris is probablyversicolorandif thepredictedvalueis small(lessthan 
��
� ), thehypothesis
is that it is probablynot. ThusIris A is at the point �x� M ����� M ���
	 M ���
� M 
��
	 M 
g� . Iris B is at the point�x� M ����� M 	��
� M ����� M ���
	 M �K� .
We’ll usethenotation � ��y to referto the z th example’s { th attributevalueandthenotation � � to referto

the z th example’s label.Thusourexamplesareasfollows.�|�=/6/ M �=/ 7 M �=/~} M �<�<� M � / u M ��/���|� 7 / M � 767 M � 7 } M �<�<� M � 7 u M � 7 �
...

...
...

.. .
...

...��� , / M � , 7 M � , } M �<�<� M � , u M � , �
Wewantto find asetof coefficients # � sothatthefunction ����� �v!(A u��.0/ # � � � ascloselyapproximatesthe��� aspossible(still usingthesum-of-squareserror).To computethis ����� � , it turnsout thatweneedto solve
asetof equations.�;A � � ��/ � ��/ ��# / & �;A � � ��/ � � 7 ��# 7 & [<[<[�& �~A � � ��/ � � uK��#ku ! A � � ��/ � ��;A � �4� 7 ����/���#�/�& �;A � �4� 7 �4� 7 ��# 7 & [<[<[�& �~A � ��� 7 � � uK��#ku ! A � �4� 7 ���...

...
. ..

...
...�~A � � � uf� ��/ ��# / & �;A � � � uY� � 7 ��# 7 & [<[<[�& �;A � � � uf� � uC��#ku ! A � � � u<� �

Herewehave r equationsand r unknowns(namely, #�/ through#ku ). After wesolve for the #%� , thebest-fit
hyperplaneis thefunction ����� �G! A � #%����� . Givenanexample )��=/ M �<�<� M �4uC* for which we wantto make a
prediction,we wouldpredict ���6)���/ M �<�<� M �4u\*6� .

Soto computethebest-fithyperplanefor our versicolorlabeling, we’ll haveto find our setof equa-
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tions.To do that, weneedto computea lot of sums.Herewego.A � ����/6����/�! � 7 &n� 7 &n� 7 &n� 7 &n� 7 ! ���

A � ����/6��� 7 ! �N[Y�����N&c�G[K������&c�G[K���
��&a�9[C���
�s&c�G[K���
� ! 	������A � ����/6���w}�! �N[C���
	s&c�G[K	��
��&c�G[K����
S&a�9[C	����N&c�G[K���
	 ! �f�����A � ����/6����� ! �N[g���
�s&c�G[<�����s&c�G[<������&a�9[C������&c�G[K����� ! 	�
����A � ����/6���w��! �N[K
��
	s&c�G[W���
	�&c�G[W���
��&a�9[g���
�s&c�G[K	���
 ! �����A � ����/6��� ! �N[K
s&c�G[W��&a�9[g��&n�G[K
s&a�G[Y
 ! 	��

A � � � 7 � � 7 ! ����� 7 &l����� 7 &l���
� 7 &Q���
� 7 &l���
� 7 ! �Y���������A � ��� 7 ���w}�! �����^[K���
	�&l�����N[K	��
��&l���
�`[K����
`&l���
�`[C	����s&l���
�`[C���
	 ! ���������A � ��� 7 ����� ! �����^[W���
��&l�����N[<�����s&l���
�`[<�����9&l���
�`[C������&l���
�`[C����� ! �Y	�
������A � ��� 7 ���w��! �����^[Y
��
	�&l�����N[W���
	�&l���
�`[W���
�S&l���
�`[g���
��&l���
�`[C	���
 ! ���������A � ��� 7 ��� ! �����^[Y
�&l�����G[��H&l���
�^[W��&Q���
�`[Y
�&l���
�`[C
 ! �������A � � �w} � �w} ! ���
	 7 &l	��
� 7 &l����
 7 &Q	���� 7 &l���
	 7 ! ���������A � ���w}������ ! ���
	�[W���
��&l	��
�^[<�����s&l����
^[<�����9&l	����S[C������&l���
	`[C����� ! ���������A � ���w}����w��! ���
	�[Y
��
	�&l	��
�^[W���
	�&l����
^[W���
�S&l	����S[g���
��&l���
	`[C	���
 ! �Y�����g�A � ���w}���� ! ���
	�[Y
�&l	��
�`[��H&l����
�[W��&Q	����S[Y
�&l���
	`[C
 ! �����A � �����f����� ! ���
� 7 &_����� 7 &_����� 7 &Q����� 7 &l����� 7 ! ��	������A � �����f���w��! ���
��[Y
��
	�&_�����`[W���
	�&_�����G[W���
�S&l�����G[g���
��&l�����G[C	���
 ! �������Y	A � �����f��� ! ���
��[Y
�&_�����S[��H&_�����N[W��&Q�����G[Y
�&l�����G[C
 ! �����A � � �w� � �w� ! 
��
	 7 &c���
	 7 &c���
� 7 &a���
� 7 &l	���
 7 ! �<
������A � ���w����� ! 
��
	�[Y
�&c���
	`[��H&c���
�^[W��&a���
�`[Y
�&l	���
^[C
 ! 	����A � ���w����� ! 
 7 &n� 7 &n� 7 &_
 7 &_
 7 ! 	��


Fromthesewederivea setof fiveequationswith fiveunknowns.����
�#�/�& 	������\
�# 7 & �f���
��
�#k} & 	�
��
��
�#%� & ���
��
�#k� ! 	���
	������C#�/�& �Y�����
���\# 7 & �����
���\#k} & �Y	�
��d���C#%� & �����
���\#k� ! ��������f���
�\#�/�& �����
���\# 7 & �����
���f#k} & ���������f#%� & �Y���d�g�\#k� ! ���
�	�
��
�\#�/�& �Y	�
��d���C# 7 & ���������f#k} & ��	��
���f#%� & �������Y	\#k� ! ���
����
�\# / & �����
���\# 7 & �Y���d�g�\# } & �������Y	\# � & �<
������\# � ! 	��
�
Nowwesolvethis to get thehyperplanehypothesis.(Youcantry to do it byhand,but at thispoint I
broke downandwentto a computer.) Theanswerturnsout to bethefollowing.������/ M � 7 M �4} M �4� M �4�K�v!c
��
��
W�\��/E&X
��������\� 7 1Q����
�
��2}N1F
��
	W���\���S1F
���
W	�
��4�
For Iris Q, thepredictedansweris
��
��
W��[W��&X
���������[C���
�^1Q����
�
i[K	����^1F
��
	W����[K���
��1F
���
W	�
i[W���
	h!c
������W�^�
Thuslinear regressionindicatesthatwearefairly confidentthat Iris Q is versicolor(asindeedit is).

Analysis Linearregressionis reallybestsuitedfor problemswheretheattributesandlabelsareall numeric
andthereis reasonto expectthata linearfunctionwill approximatetheproblem.This is rarelya reasonable
expectation— linearfunctionsarejust too restrictedto representawide varietyof hypotheses.
Advantages:� Hasrealmathematicalrigor.



8 Datamining� Handlesirrelevant attributessomewhat well. (Irrelevant attributestendto get a coefficient closeto
zeroin thehyperplane’s equation.)� Hypothesisfunctionis easyto understand.

Disadvantages:� Oversimplifiestheclassificationrule. (Why shouldwe expecta hyperplaneto bea goodapproxima-
tion?)� Difficult to compute.� Limited to numericattributes.� Doesn’t at all representhow humanslearn.

1.2.2 Nearestneighbor

Our secondapproachoriginatesin the ideathatgivena query, the trainingexamplethat is mostsimilar to
it probablyhasthe samelabel. To determinewhat we meanby most“similar”, we have to designsome
sortof distancefunction. In many cases,thebestchoicewould be theEuclidean distancefunction, the
straight-linedistancebetweenthe two points )��4��/ M �4� 7 M �<�<� M � � uC* and )���yY/ M ��y 7 M �<�<� M � y u\* in r -dimensional
space.Theformulafor thiswouldbe� ���4��/H1L��yY/�� 7 &a����� 7 1L��y 7 � 7 &U[<[<[�&>��� � uN1L� y uY� 7 �
Anothercommonpossibilityis to usetheManhattan distancefunction,: � ��/ 1L� yY/ :Y&>: � � 7 1�� y 7 :Y&n[<[<[�&>: � � uN1L� y uW:��
In practice,peoplegenerallygo for theEuclideandistancefunction. They don’t really have muchmathe-
maticalreasoningto backthisup; it just seemsto work well in general.

In theIris example, we’ll computetheEuclideandistancefromeach of thevectors for thetraining
examplesto thequeryvectorrepresentingIris Q.

example distance label
Iris A � �������`13���
�W� 7 &>�5���
	�13	������ 7 &>�x���
��13���
�W� 7 &>�D
��
	^1Q���
	W� 7 !a����
�� setosa
Iris B � �5�����N13���
�W� 7 &>�5	��
��13	������ 7 &>�������^13���
�W� 7 &>�x���
	^1Q���
	W� 7 !c
��
��� versicolor
Iris C � �5���
�^13���
�W� 7 &>�5����
i13	������ 7 &>�������s13���
�W� 7 &>�x���
�^1Q���
	W� 7 !c
��d�g	 versicolor
Iris D � �5���
�^13���
�W� 7 &>�5	����^13	������ 7 &>�5�����s13���
�W� 7 &>�x���
�^1Q���
	W� 7 !?���
��� virginica
Iris E � �5���
�^13���
�W� 7 &>�5���
	�13	������ 7 &>�5�����s13���
�W� 7 &>�5	���
�1Q���
	W� 7 !?���
��� virginica

SinceIris C is the closest,the nearest-neighboralgorithm would predict that Iris Q hasthe same
label asIris C: versicolor.

Therearetwo commonrefinementsto the nearest-neighboralgorithmto addresscommonissueswith
thedata.Thefirst is thatthetheraw Euclideandistanceoveremphasizesattributesthathavebroaderranges.
In theIris example,thepetallengthis givenmoreemphasisthanthepetalwidth (sincethelengthvariesup
to four centimeters,while thewidth only variesup to two centimeters).This is easyto fix by scalingeach
attributeby themaximumdifferencein theattributevalues,to ensurethatthedistancebetweentwo attribute
valuesin thesameattributenever exceeds� .� ��y�! �4��y�Z�\��� � � y 1 �Z�� �� � � y
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By applyingthedistancefunctionto the � ��y insteadof the �4��y , thisartificial overemphasisdisappears.
The secondcommonrefinementis to addressthe issueof noise — typically, a small but unknown

fractionof thedatamight be mislabeledor unrepresentative. In the iris example,Iris C maynot really be
versicolor. Or perhapsIris C’sdimensionsareuncharacteristicof versicolor specimens.Wecangetaround
this usingthelaw of largenumbers:Selectsomenumber¡ andusethe ¡ nearestneighbors.Theprediction
canbetheaverageof these¡ nearestneighborsif the labelvaluesarenumeric,or theplurality if the label
valuesarediscrete(breakingtiesby choosingtheclosest).

If wechoose¡ to be � , wefind that thethreeclosestirisesto Iris Q are IrisesB, C, andD, of which
twoare versicolorandoneis virginica. Therefore westill predictthat Iris Q is versicolor.

Analysis Thenearest-neighboralgorithmandits variantsareparticularlywell-suitedto collaborative fil-
tering, wherea systemis to predicta given person’s preferencebasedon otherpeople’s preferences.For
example,amovie Websitemight askyou to ratesomemoviesandthentry to find moviesyou’d like to see.
Here,eachattribute is a singlemovie that you have seen,andtheWebsite looks for peoplewhosemovie
preferencesarecloseto yoursandthenpredictsmoviesthattheseneighborslikedbut thatyouhavenotseen.
Or you might seethis on book-shoppingsites,wherethesitemakesbookrecommendationsbasedon your
pastorderhistory.

Collaborative filtering fits into the nearest-neighborsearchwell becauseattributestendto be numeric
andsimilar in nature,soit makessenseto give themequalweightin thedistancecomputation.
Advantages:� Representscomplex spacesvery well.� Easyto compute.

Disadvantages:� Doesnot handlemany irrelevantattributeswell. If we have lots of irrelevant attributes,thedistance
betweenexamplesis dominatedby thedifferencesin theseirrelevantattributesandsobecomesmean-
ingless.� Still doesn’t look muchlike how humanslearn.� Hypothesisfunctionis toocomplex to describeeasily.

1.2.3 ID3

Linear regressionandnearest-neighborsearchdon’t work very well whenthe datais discrete— they’re
really designedfor numericdata.ID3 is designedwith discretedatain mind.

ID3’s goal is to generatea decisiontree that seemsto describethe data. Figure 1.4 illustratesone
decisiontree.Givena vector, thedecisiontreepredictsa label. To getits prediction,we startat thetop and
work downward. Saywe take PlantQ. We startat the top node.SincePlantQ’s stemis normal,we go to
theright. Now we look for mold on PlantQ’s seeds,andwe find thatit hassome,sowe go to theleft from
there. Finally we examinethespotson PlantQ’s leaves;sincethey don’t have yellow halos,we go to the
right andconcludethatPlantQ musthave downy mildew.

Decisiontreesarewell-suitedfor discretedata.They representa goodcompromisebetweensimplicity
andcomplexity. Recallthatoneof our primary complaintsaboutlinear regressionwasthat its hypothesis
wastooconstrictedto representverymany typesof data,while oneof ourprimarycomplaintsaboutnearest-
neighborsearchwasthat its hypothesiswastoo complex to beunderstandable.Decisiontreesareeasyto
interpretbut canrepresentawidevarietyof functions.
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stem
condition

mold
on seed

plant
growth

plant
growth

herbicide
injury

frog eye
leaf spot

bacterial
pustule mildew

downy

bacterial
blight

abnormal normal noyes

normalabnormal

abnormal normal

Figure1.4: A decisiontreeexample

Given a setof data,the goal of ID3 is to find a “good” decisiontreethat representsit. By good, the
generalgoalis to find asmalldecisiontreethatapproximatesthetruelabelprettywell.

Constructing the tree automatically ID3 follows a simple techniquefor constructingsucha decision
tree.Webegin with a singlenodecontainingall thetrainingdata.Thenwe continuethefollowing process:
We find somenodecontainingdatawith differentlabels,andwe split it basedon someattributewe select.
By split, I meanthatwe take thenodeandreplaceit with new nodesfor eachpossiblevalueof thechosen
attribute. For example,with thesoybeandata,if we have a nodecontainingall theexamplesandchooseto
split on plantgrowth, theeffectwould beasfollows.

A,B,C,D,E,F

plant
growth

abnormal normal

B,D A,C,E,F

beforethesplit afterthesplit

Westopsplittingnodeswheneverynodeof thetreeis eitherlabeledunanimouslyor containsindistinguish-
ablevectors.

How doesID3 decideon which attribute to split a node?Beforewe answerthis, we needto definethe
entropy of asetof examples.Theentropy of aset ¢ is definedby thefollowing equation.£9¤�¥D¦6§�¨4© �;¢v�v! -

labelsª 1�«�¬�­   «�¬
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Here«�¬ is thefractionof pointsin thesetwith thelabel ® .
In thetraining dataof Figure 1.1,there are fivelabels: 	WB�� of theexampleshavefrog eyeleaf spot,
and �KB�� of theexampleshaveeach of thefour otherdiseases.Sotheentropyis1 	� ­   	� &a1 �� ­   �� &c1 �� ­   �� &c1 �� ­   �� &c1 �� ­   �� !¯���
����
g�`�
Thisentropyis ratherlarge, quantifyingthefact that thesetisn’t labeledconsistentlyat all.

Theentropy is a weird quantitythatpeopleusemoreor lessjust becauseit works. Whentheentropy is
small,this indicatesthatthingsarelabeledprettyconsistently. As anextremeexample,if everythinghasthe
samelabel ® , thensince«�¬9!°� theentropy would bejust 1E«�¬e­   «�¬9!(
 . We’re aimingfor a smalldecision
treewherethetotalentropy of all theleavesis assmallaspossible.

Now let’s look at whathappenswhenwe split a node.This splits thesetof examplesit representsinto
piecesbasedon thevaluesof theattribute.To quantifyhow goodthesplit is, wedefinethegain of splitting
anodeon aparticularattribute: It is theentropy of theold setit represented,minustheweightedsumof the
entropiesof thenew sets.Say ¢ representstheold set,and ¢2± representstheexamplesof ¢ with thevalue� for theattributeunderconsideration.Thegainwouldbe£G¤�¥D¦6§�¨4© �;¢v�E1 -

values² :d¢2±�::d¢N: £9¤�¥D¦6§�¨4© �;¢2±\�0�
At thebeginningof thealgorithm,all theexamplesare in a singlenode. Let’s considersplitting on
theplant growth. We just computedtheentropyof all six training examplesto be ���
����
g� . After we
split on plant growth,weget two setsof plants: B andD haveabnormalplant growth(this sethas
entropy 1i�x�KB�	W��­   �x�KB�	W�W&L1h�x�KB�	W��­   �x�KB�	W��!c
��
������� ); andA,C, E,andF havenormalplantgrowth
(thissethasentropy ����
W���W� ). Sothegainof splittingon plant growthis���
����
g��1°³ 	� 
��
�������9& � � ����
W���W�C´Q!a
��
���������

We cando similar calculationsto computethegain for stemconditioninstead.Thisdividesthe
plantsinto a setof A, B, andF (entropy 
��
������� ) anda setof C, D, andE (entropy ����
W����� ). Thegain
of splittingon stemconditionis���
����
g��1 ³ �� 
��
�������`& �� ����
W����� ´ !c
��
�������
Thisis larger thanthegain for plant growth,sosplitting on stemconditionis preferable.

After computingthegainsof splitting for eachof theattributes,we choosetheattribute that givesthe
largestgainandthensplit on it, giving usanew tree.Wecontinuesplittingnodesuntil theexamplesin every
nodeeitherhave identicallabelsor indistinguishableattributes.

Wewouldalsoconsidersplittingonleaf-spothalos(gainof 0.6931)andsplittingonseedmold(gain
of 0.6367).Of these, wecouldgo with eitherstemconditionor leaf-spothalos: They bothhavethe
samegain,0.6931.We’ll choosestemcondition,givingusa new tree.

stem
condition

A, B, F C, D, E

normalabnormal
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We repeattheprocessfor each of theremainingsets.We first considerPlantsA, B, andF. They
don’t havethesamedisease, sowe’ll look for an attributeon which to split them.Thatturnsout to
be easy, as they disagreeonly on the plant-growth attribute (noneof themhaveleaf-spothalosor
seedmold),sowe’ll split thatnodebasedonplantgrowth. (Thegainof thiswouldbe0.6365,while
splitting on leaf-spothalosor seedmoldgivesa gain of 0.) Nowwehavethefollowing tree.

stem
condition

plant
growth

B A, F

C, D, E

abnormal normal

normalabnormal

Thesetof A and F isn’t a problem,as they both havethe samedisease. Sothe next setwe’ll
considerfor splitting is C, D, andE. There, thegain for splittingbasedonplant growthis ����
W������1�6�5	WB��W�8
��
�������G&t�x�KB��W�8
g��!c
��
������� . Thegain for splittingon leaf-spothalosis 0, sincethey all have
leaf-spothalos.Thegain for splitting on seedmoldis ����
W�����i1t�6�5	WB��W�8
��
�������N&a�x�KB��W�8
g��!c
��
������� .
Wecouldgo for eitherplantgrowthor seedmold; saywechooseseedmold.

stem
condition

mold
on seed

plant
growth

B A, F C, D E

abnormal normal noyes

normalabnormal

Finally, we considerhow to split Plants C and D. Splitting on plant growth givesa gain of
0.6931,whilesplitting on leaf-spothalosgivesa gain of 0. Wemustsplit on plantgrowth,givingus
thetreeof Figure 1.4.

Analysis Advantages:� Representscomplex spaceswell.� Generatesa simple,meaningfulhypothesis.� Filtersout irrelevantdata.

Disadvantages:
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Figure1.5: Overfittingsomedata.� Doesn’t handlenumericattributeswell.� Still doesn’t look muchlike how humanslearn.

1.3 General issues

Thereareanumberof overarchingdataminingissuesthatapplyregardlessof thetechnique.Theimportance
of theseissuesmakesthemworthstudyingseparately. We’ll look at justa few.

Data selection Choosingthedatais animportantelementof applyingdatamining techniques.Of course
we want thedatato have integrity — thoughthere’s a naturaltradeoff betweenintegrity andquantitythat
wehave to balance.Wecertainlyneedagoodsampleof data,or elsethelearnedhypothesiswon’t beworth
much.But we alsoneeda largesampleto work from.

Lessobvious is the importanceof a selectinggoodattributes. Sometimeswe needto do someprepro-
cessingto getgooddata.For example,with loanapplications,theapplicant’s dateof birth is probablywhat
is really storedon the computer, but really this isn’t significantto the application(neglectingastrological
effects)— what’s importantis the applicant’s age. So, thoughthe databaseprobablyholds the birthday,
we shouldcomputetheageto give to the learningalgorithm. We canseea similar thing happeningin the
soybeandata(Figure1.1): Insteadof giving theplant height(which after all, coupledwith themonththe
plantwasfoundimplieswhethergrowth is stunted),thedatasetjust includesa featuresayingwhetherplant
growth is normalor abnormal. The researchersheredid somepreprocessingto simplify the taskfor the
learner.

Overfitting In applyinga machinelearningtechnique,we needto be carefulto avoid overfitting . This
occurswhen the algorithm adaptsvery carefully to the specifictraining datawithout improving general
performance.For example,considerthe two graphsin Figure1.5. Although thegraphat the right fits the
dataperfectly, it’s likely thatthegraphat left is abetterhypothesis.

Overfitting appliesto just aboutany learningalgorithm. ID3 is particularly proneto overfitting, as
it continuesgrowing the tree until it fits the dataperfectly. Machinelearningresearchershave waysof
workingaroundthis,but they getrathercomplicated,andsowe’re choosingto skip theirapproaches.

There’s a tradeoff: Do we go for theperfectfit (which maybeanoverfit), or do we settlefor a simpler
hypothesisthat seemsto be pretty close? The answeris that this is part of the art of applyingmachine
learningtechniquesto datamining. But anaid to this is to beableto evaluatetheerrorof agivenhypothesis.

Evaluating hypotheses Oncewe geta hypothesisfrom a learningalgorithm,we oftenneedto getsome
sortof estimateof how goodit is. Themosttypicalmeasureis theerror: theprobabilitythatthehypothesis
predictsthewronglabelfor a randomlychosennew example.
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It’s very temptingto feedall thedatawe have into the learningalgorithm,but if we needto reportthe
hypothesiserror, this is a mistake. We alsoneedto usesomedatato computetheerror, andwe can’t reuse
thetrainingdatafor this computation.(This would beanalogousto giving studentsall theanswersto a test
thedaybefore:Of coursethey’ ll do well on thetest,but whathave they learned?)

Soin situationswherewe needto computetheerror, we separatethedatainto two sets— the training
set, which holds the exampleswe give to the learningalgorithm — and the test set, which we usefor
computingthe error. The error we reportwould be the fraction of the examplesin the testseton which
the learningalgorithm’s hypothesispredictswrongly. Typically two-thirdsof the datamight go into the
trainingsetanda third into thetestset,to give a reasonabletradeoff on theaccuracy of thehypothesisand
theaccuracy of thereportederror.

In many situations,thedatajust isn’t plentiful enoughto allow this. U S Presidentialelectionswould
bea goodexample:It’s not asif we cango out andgeneratenew elections,sowe’re stuckwith thehandful
wehave. If wewantto applya learningalgorithmto pastpolling dataandtheireffecton thefinal result,we
wantto useall thedatawecanfind. Machinelearninghasproposedseveraltechniquesfor bothusingall the
dataandgettinga closeestimateof theerror, but they’re beyondthescopeof this survey.

Ethics Obviously any time you dealwith personalinformation,ethicalconsiderationsarise. Databases
often include sensitive information that shouldn’t be released. Social Securitynumbersare just one of
several piecesof datathat onecanuseto gain accessto a person’s identity, which you don’t want to get
aroundtoomuch.

Lessobviously, dataminersalsoneedto be carefulto avoid discrimination.For example,a bankthat
intendsto usedatamining to determinewhetherto approve loansshouldthink twice beforeincludingrace
or genderasoneof theattributesgiven to the learningalgorithm. Evenzip codesshouldprobablynot go
into thelearningalgorithm,asimplicit discriminationcanarisedueto communitieswith aparticularlyhigh
densityof onerace.

For theseapplications,thedatamining practitionershouldreview thegeneratedhypothesisto look for
unethicalor illegal discrimination.Algorithms thatgeneratemeaningfulhypothesis(like linear regression
or ID3, but notnearest-neighborsearch)areparticularlyusefulfor suchapplicationsthatneedhumanreview
at theend.

1.4 Conclusion

We have seena sampleof datamining techniques— linear regression,nearest-neighborsearch,andID3
— andotherissuesthatdatamining practitionersmustheed.Thetopic of datamining is rich andjust now
becomingawidely appliedfield. Wecouldeasilyspendacompletesemesterstudyingit — it involvesmany
interestingapplicationsof mathematicsto this goalof dataanalysis.I’d personallylove to spendmoretime
on it — but I alsoknow what’s to come,andit’s every bit asintriguing!



Chapter 2

Neural networks

Oneapproachto learningis to try to simulatethehumanbrainin thecomputer. To dothis,weneedto know
roughlyhow abrainworks.

A brainneuron(seeFigure2.1) is acell with two significantpieces:somedendrites, whichcanreceive
impulses,andanaxon, which cansendimpulses.Whenthedendritesreceive enoughimpulses,theneuron
becomesexcited andsendsan impulsedown the axon. In the brain, this axon is next to otherneurons’
dendrites.Theseneuronsreceive the impulseandmaythemselvesbecomeexcited,propagatingthesignal
further. This connectionbetweenanaxonandadendriteis asynapse.

Over time, theconnectionsbetweenaxonsanddendriteschange,andsothebrain “learns” asthecon-
ditions underwhich neuronsbecomeexcited change.How exactly neuronsmaponto concepts,andhow
the changingof synapsesrepresentsan actualchangein knowledge,remainsa very difficult questionfor
psychologistsandbiologists.

2.1 Perceptron

Using what we know abouta neuron,though,it’s easyto build a mechanismthat approximatesone. The
simplestattemptat this is called the perceptron. Although the perceptronisn’t too usefulasa learning
techniqueon its own, it’s worth studyingdueto its role in artificial neuralnetworks (ANNs), which we’ll
investigatein Section2.2.

2.1.1 The perceptron algorithm

Theperceptronhasa numberof inputscorrespondingto theaxonsof otherneurons.We’ll call theseinputs��� for zE!?� M �<�<� M � (where� is thenumberof inputs).It alsohasaweight µG� for eachinput (corresponding
to thesynapses).It becomesexcitedwhenever ,- �w.0/ µG�����E¶Q
^�
Whenit is excited,it outputs � , andat othertimesit outputs 1i� . Theperceptroncanoutputonly thesetwo
values.

Let us return to classifyingirises. As with linear regression,we’ll add a constant-oneattribute to
giveaddedflexibility to thehypothesis.We’ll alsomake thelabel numericby labelingan example �
if it is versicolorand 1�� if it is not. Figure 2.2containsthedatawe’ll use.
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dendrites

axon

nucleus

Figure2.1: A depictionof ahumanneuron.

constant sepal sepal petal petal is species
one length width length width versicolor

Iris A � ����� ���
	 ���
� 
��
	 1��
Iris B � ����� 	��
� ����� ���
	 �
Iris C � ���
� ����
 ����� ���
� �
Iris D � ���
� 	���� ����� ���
� 1��
Iris E � ���
� ���
	 ����� 	���
 1��

Figure2.2: A prediction-from-examplesproblemof Iris classification.
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We’ll chooserandomweightswith which to begin the perceptron. Sayour perceptron begins
with theweightsµ`/�!$� , µ 7 !·
 , µN}]!¸
 , µG�]!¸
 , µN�p!T� . For thefirst prediction,weneedto
computewhether �- ��.0/ µG�D���=!?�G[W��&X
`[Y�����N&X
�[K���
	�&X
`[g���
��&c�G[Y
��
	i!?���
	
exceeds
 . Sinceit does,theperceptron predictsthat this example’s label will be � .
To learn,a perceptronmustadaptover time by changingits weights µG� over time to moreaccurately

matchwhathappens.A perceptronnormallystartswith randomweights.But eachtime it makesa mistake
by predicting � whenthecorrectansweris 1�� , we changeall weightsasfollows.µ �+¹ µ � 1Fº\� �
Here º representsthe learning rate, which shouldbe chosento be somesmall numberlike 
���
W� . (If you
chooseº toolarge,theperceptronmayerraticallyoscillateratherthansettledown to somethingmeaningful.)

In our example, wejust predictedthat Iris A’s label wouldbe � whenin fact thecorrect label is 1��
(according to Figure 2.2).Sowe’ll updatetheweights.µ`/ ¹ µ`/H1Lº��=/�!?�s1F
���
W�`[g� ! 
��
���µ 7 ¹ µ 7 1Lº�� 7 !c
i1F
���
W�`[Y������!¯1N
��
	\�µN} ¹ µN}G1Lº��4}N!c
i1F
���
W�`[C���
	i!¯1N
����Y�µG� ¹ µG�N1Lº����s!c
i1F
���
W�`[g���
�i!¯1N
���
g�µN� ¹ µN�G1Lº��4�N!?�s1F
���
W�`[K
��
	i! 
��
���
Theseare theweightswe’ll usefor thenext training example.

Similarly, if theperceptronpredicts1�� whentheansweris � , we changetheweightsagain.µG� ¹ µG�e&Xº\�4�
To computethepredictionfor Iris B, wedeterminewhether�- ��.0/ µG������!n
��
���^[��H&a�x1N
��
	\���v[K������&a�x1N
����Y�W�v[K	��
�s&a�x1N
���
g����[Y�����N&X
��
����[W���
	h!?1s
���
W�
exceeds
 . Sinceit doesnot, theperceptron predictsthat Iris B is labeled 1�� .

This is wrong: According to Figure 2.2, the correct label for Iris B is � . Sowe’ll updatethe
weights. µ`/ ¹ µ`/�&Xº\��/�! 
��
����&X
���
W��[W� ! ����
�
µ 7 ¹ µ 7 &Xº\� 7 !?1N
��
	\�S&X
���
W��[K�����S! 
���
g�µN} ¹ µN}H&Xº\�2}N!?1N
����Y�s&X
���
W��[K	��
�h!?1s
���
W	µ ��¹ µ � &Xº\� � !?1N
���
g�N&X
���
W��[<�����i! 
����K�µN� ¹ µN�H&Xº\�2�N! 
��
����&X
���
W��[W���
	h! ����
W�
Theseare theweightswe’ll usefor thenext training example.

Let me make an intuitive argumentfor why this training rule makes sense.Saywe get an example
wherethe perceptronpredicts � when the answeris 1�� . In this case,eachinput contributed µG�D�4� to a
total that endedup beingpositive (andso the perceptrongot improperlyexcited). After the training, the
new weight is µG��1_º���� , andso if theperceptronsaw thesameexampleagain,this input would contribute��µG��1lº����;�»���^!VµG������1lº�� 7� . Since º is positive, andsince � 7� mustbe positive regardlessof �4� ’s value,



18 Neural networks

this contribution is smallerthanbefore.Thusif we repeatthesameexampleimmediately, thesumwill be
smallerthanbefore— andhencecloserto beinglabeled 1�� correctly. (Thesameline of argumentapplies
whentheperceptronpredicts1�� whentheansweris � .)

Theperceptronalgorithmwill iterateoverandover throughthetrainingexamplesuntil eitherit predicts
all trainingexamplescorrectlyor until somebodydecidesit’s time to stop.

To train the perceptron on the irises, we’d go throughthe examplesseveral times. Thefollowing
tabledemonstrateshowtheweightschange while goingthroughall theexamplesthreetimesover.

iris A � µG����� µ`/ µ 7 µN} µG� µN�
A ���
	�
 
��
��� 1N
��
	\� 1N
����Y� 1N
���
g� 
��
���
B 1N
���
W� ����
�
 
���
g� 1N
���
W	 
����K� ����
W�
C ���
��� ����
�
 
���
g� 1N
���
W	 
����K� ����
W�
D ���
	�� 
��
��� 1N
��
	�	 1N
����Y� 1N
���
W� 
��
���
E 
��
��
 
��
��
 1N
��
��� 1N
��
��	 1N
��
�\� 
��
���
A 1s	��
�\� 
��
��
 1N
��
��� 1N
��
��	 1N
��
�\� 
��
���
B 1s���
��� 
��
��� 1N
��
	\� 1N
����Y� 1N
����<
 
��
��	
C 1N
����Y� ����
�
 
���
�� 1N
���
W� 
����<
 
��
���
D ���
�\� 
��
��� 1N
��
	�� 1N
����Y� 1N
����Y� 
��
���
E 1N
��
	�� 
��
��� 1N
��
	�� 1N
����Y� 1N
����Y� 
��
���
A 1N
������ 
��
��� 1N
��
	�� 1N
����Y� 1N
����Y� 
��
���
B 1N
��
��� ����
�
 
���
W� 1N
���
W	 
���
W� 
��
���
C 	��
��
 ����
�
 
���
W� 1N
���
W	 
���
W� 
��
���
D ���d��� 
��
��� 1N
��
	\� 1N
����Y� 1N
����K� 
��
���
E 1N
��
	W� 
��
��� 1N
��
	\� 1N
����Y� 1N
����K� 
��
���

At firstglance, this looksquitenice. Onthefirstpassthroughtheexamples,theperceptron classified
only � of the � flowers correctly. On thesecondpass,it got 	 correct.Andon thethird pass,it got �
correct.

If you continueto seehow it improves,though,the perceptron doesn’t label � of the flowers
correct until �\� timesthrough the training set. It finally gets all � flowers right on the � M ����� thiteration through the examples. (The training rate doesn’t affect this too much: Increasingthe
trainingrateevenquitea bit doesn’t speedit upmuch, anddecreasingtherateonlyslowsit a little.)

Incidentally, after goingthroughall theseiterationsusing ºp!¼
���
W� , thefinal weightswouldbeµ`/�!?1i���
��
 , µ 7 !?1N
��
��
 , µN}s!?1N
����Y� , µG�s!n���
��� , and µN�N!?1������
��� .
2.1.2 Analysis

Althoughtheapproachesareverydifferent,it’s instructive to comparelinearregressionwith theperceptron.
Theirpredictiontechniquesareidentical:They have asetof weights,andthey predictaccordingto whether
theweightedsumof theattributesexceedsa threshold.

We know thatlinearregressionhasa strongmathematicalfoundation,andwe know thattheperceptron
hypothesisisn’t any more powerful than that usedby linear regression. So why would you ever usea
perceptroninstead?

You wouldn’t. I don’t know of any reasonto usea single-perceptronpredictor, whenyou could just as
easilydo linearregression.Perceptronsareeasierto program,sure,andeasierto understand.But they take
a lot morecomputationto getthesameanswer, if you’re lucky enoughto getananswer. (Perceptronsaren’t
evenguaranteedto convergeto asingleanswer, unlessthere’sahyperplanethatseparatesthedataperfectly.)

Sowhat’s thepoint of studyingperceptrons?They’re inspiredby humanbiology, andthehumanbrain
is thebestlearningdeviceknown to humankind.But weneedto keepin mind that,thoughthehumanbrain
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Figure2.3: An artificial neuralnetwork.

is extraordinarilypowerful, eachindividual neuronis relatively worthless.To getgoodperformance,we’re
goingto have to network neuronstogether. That’s whatwe’re goingto look at next, andthat’s whenwe’ll
startto seesomedividendsfrom ourstudyof perceptrons.
Advantages:� Simpleto understand.� Generatesa simple,meaningfulhypothesis.� Inspiredby humanbiology.� Adaptsto new datasimply.

Disadvantages:� Thehypothesisis a simplelinearcombinationof inputs,just like linearregression,but linearregres-
sionhasmuchmoresolidmathematicalgrounds.� Only worksfor predictingyes/novalues.

2.2 Artificial neural networks

Artificial neuralnetworks (ANNs) arerelatively complex learningdevices. We’ll look first at the overall
architecture,thenat theindividual neurons,andfinally at how thenetwork predictsandadaptsfor training
examples.

2.2.1 ANN architecture

Figure2.3picturesthe layoutof oneANN. This particularnetwork hasthreelayers.Thefirst is the input
layer, includingfour nodesin Figure2.3.Thesenodesaren’t reallyneuronsof thenetwork — they just feed
theattributesof anexampleto theneuronsof thenext layer. (We’ll have four inputswhenwe look at the
irises,aseachiris hasfour attributes.)

Thenext layeris thehidden layer. This layerhasseveralneuronsthatshouldadaptto theinput. These
neuronsaremeantto processthe inputsinto somethingmoreuseful,like detectingparticularfeaturesof a
pictureif theinputsrepresentthepixelsof a picture— but they’ ll automaticallyadapt,sowhatthey detect
isn’t necessarilymeaningful. Choosingthe right numberof neuronsfor this layer is an art. Figure 2.3
includesthreehiddenneuronsin the hiddenlayer, with every input nodeconnectedto every neuron,but
really anANN couldhave any numberof hiddenneuronsin any configuration.

Thefinal layeris theoutput layer. It hasanoutputneuronfor eachoutputthattheANN shouldproduce.
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threshold function sigmoid function

Figure2.4: Thethresholdfunctionandthesigmoidfunction.

Onecouldconceivably havemorehiddenlayers,or deleteor addlinks differentfrom thosediagrammed
in Figure2.3,or evenusea morecomplex unlayereddesign.But themostcommondesignis the two-layer
network , like that of Figure2.3. In this architecture,thereis a layer of somenumberof hiddenneurons,
followedby a layerof somenumberof outputneurons.It haseachinput connectedto eachhiddenneuron,
and it haseachhiddenneuronconnectedto eachoutputneuron. Peopleusuallyusetwo-layernetworks
becausemorecomplex designsjusthaven’t provenusefulin many situations.

In our walk-throughexampleof howtheANNworks,we’ll usethefollowing verysimpletwo-layer
networkwith twohiddenunits ½ and ' andoneoutputunit ¾ .

o

b

a

Asis commonlydonewith ANNs,each of theneuronsin our networkhasanadditionalconstant-
oneinput. Wedo this insteadof addinga new constant-� attribute(aswedid with linear regression
andperceptrons),becausethatwouldn’t givea constant-oneinput into theoutputunit ¾ .

2.2.2 The sigmoidunit

Eachunit of thenetwork is to resembleaneuron.Youmighthopeto useperceptrons,but in factthatdoesn’t
work very well. Theproblemis oneof feedback:In a neuralnetwork, we mustsometimesattributeerrors
in theANN predictionto mistakesby thehiddenneurons,if thehiddenneuronsareto changebehavior over
time at all. (If they don’t changebehavior, thereisn’t muchpoint in having them.)Researchersjusthaven’t
foundagoodway of doingthiswith regularperceptrons.

But researchershavefiguredout a practicalway to do this attribution of errorusinga slight modifica-
tion of the perceptron,calleda sigmoid unit . Sigmoidunits producean outputbetween
 and � , usinga
slightly differentprocedurefrom before.(Having thelow outputbeing 
 is just aminor differencefrom the
perceptron,whoselow outputis 1�� . We’ll just rework our trainingexamplelabelsby replacing 1�� labels
with 
 .)

A sigmoidunit still hasa weight µG� for eachinput ��� , but it processestheweightedsumslightly differ-
ently, usingthesigmoid function, definedas¿ ���e�v! ���&lÀ�Á q �
This is asmoothedapproximationto thethresholdfunctionusedby perceptrons,asFigure2.4 illustrates.

To makeapredictiongiventheinputs �4� , thesigmoidunit computesandoutputsthevalue¿3Â - � µG������ÃV�
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Notice that this meansit will outputsomenumberbetween
 and � . It will never actuallybe 
 or � , but it
cangetvery close.

The differencebetweena sigmoid unit anda perceptronis quite small. The only real reasonto use
thesigmoidunit is so that themathematicsbehindtheanalysis— which we won’t examine— worksout
to show that the neuralnetwork will approachsomesolution. The advantageof a sigmoidunit is that its
behavior is smoothandnever flat. This makesmathematicalanalysiseasier, sinceit meanswe canalways
improve thesituationby climbing oneway or theotheralongthesigmoidcurve. If theoutputis too high,
we’ll try to godownhill abit. Toosmall?Go uphill abit. But we won’t getinto thedetailsof why it works.

Wehavethreesigmoidunitsin our architecture: ½ , ' , and ¾ . Thehiddenunits ½ and ' havefiveinputs
andhencefiveweightseach — onefromeach input node, plus theconstant-oneinput. Theoutput
unit ¾ hasthree inputsand hencethreeweights— onefrom each hiddenunit, plus the constant-
oneinput. To begin thenetwork,we initialize each of theseweightsusingsmall randomvaluesas
follows. µNÄ6Å`! 
���
 weightof constant-oneinput into hiddenunit ½µ`/~Å`! 
���� weightfor hiddenunit ½ fromfirst input nodeµ 7 Å !¯1N
���� weightfor hiddenunit ½ fromsecondinput nodeµN}6Å`!¯1N
���� weightfor hiddenunit ½ fromthird input nodeµG�ÆÅ`! 
���
 weightfor hiddenunit ½ fromfourth input nodeµ Ä6Ç ! 
���
 weightof constant-oneinput into hiddenunit 'µ /~Ç !¯1N
���� weightfor hiddenunit ' fromfirst input nodeµ 7 Ç ! 
��
	 weightfor hiddenunit ' fromsecondinput nodeµ }6Ç ! 
���� weightfor hiddenunit ' fromthird input nodeµ �ÆÇ !¯1N
���� weightfor hiddenunit ' fromfourth input nodeµNÄ6È`! 
���� weightof constant-oneinput into outputunit ¾µNÅÉÈ�! 
��
	 weightfor outputunit ¾ fromhiddenunit ½µ Ç5È !¯1N
���� weightfor outputunit ¾ fromhiddenunit '

2.2.3 Prediction and training

Handlinga singletrainingexampleis a three-stepprocess.We’ll seehow to do eachof thesestepsin detail
soon,but here’s theoverview.

1. Werun thetrainingexamplethroughthenetwork to seehow it behaves(thepredictionstep).

2. Weassignan“error” to eachsigmoidunit in thenetwork (theerror attribution step).

3. Weupdateall theweightsof thenetwork (theweightupdatestep).

Thewholeprocessis akin to theperceptrontrainingprocess,exceptherewe’ll alwaysupdatetheweights.
(Recallthattheperceptronweightsgotupdatedonly theperceptronerred.)

Prediction step In a two-layer network like that of Figure 2.3, the predictionstepis straightforward:
We take theexampleattributes,feedtheminto thehiddensigmoidunits to get thoseunits’ outputvalues,
andthenwe feedthesehiddenunits’ outputsto theoutputunits. Theoutputunits’ outputsaretheANN’s
prediction.
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GivenIris A, wefirst computetheoutputof hiddennode ½ .¾\Å ! ¿ ��µNÄ6Å9&_µ`/~ÅY��/�&_µ 7 ÅY� 7 &XµN}6ÅY�4}H&XµG�ÆÅY���K�! ¿ �D
���
`&_
����N[<�����s&>�x1N
����K��[C���
	s&>�x1N
����K�E[W���
�S&X
���
^[Y
��
	W�! ¿ �D
���
W	W��! ���&lÀ Á Ä�Ê Ä 7 !c
��
��
W��

Similarly, wecomputetheoutputof hiddennode' .¾ Ç ! ¿ ��µ Ä6Ç &Xµ /~Ç � / &_µ 7 Ç � 7 &Xµ }6Ç � } &_µ �ÆÇ � � �! ¿ �D
���
`&a�x1N
����K��[<�����N&X
��
	^[K���
	�&X
����N[W���
�S&c�x1N
����K�E[K
��
	W�! ¿ �D
��
	��W��! ��H&lÀ Á Ä�Ê 76Ë !c
��
�������
Finally, wecancomputetheoutputof theoutputnode¾ .¾�È�! ¿ �D¾�Ä6Èv&_µNÅÉÈf¾�Å�&_µ Ç5È ¾ Ç �v! ¿ �D
�����&l
��
	`[K
��
��
W��
S&>�x1N
����K�E[K
��
�������W�! ¿ �D
����f���W
g��! ���&lÀ Á Ä�Êd/;�6�ÆÄ !c
��
�������
Thusthecomputedpredictionfor Iris A is 
��
������� .

Err or attrib ution step Theerrorattribution stepusesa techniquecalledbackpropagation. Whatwe’ll
do is to look at theentirenetwork’soutput(madeby theoutputlayer)anddeterminetheerrorof eachoutput
unit. Thenwe’ll movebackwardandattributeerrorsto theunitsof thehiddenlayer.

To assigntheerrorof anoutputunit, saythedesiredoutputfor theunit is ÌxÈ , but theactualoutputmade
by theunit was ¾�È . Wecomputetheerrorof thatoutputunit as ¾�È\�x�N13¾\ÈY�f��ÌxÈ91L¾\ÈY� .

After we computethe errorsof all outputsunits, we backpropagateto the hiddenlayer. Considera
hiddenunit Í , whoseweightconnectingit to anoutputunit ¾ is µNÎ È . Moreover, call Í ’s output ¾�Î . (This is
theoutputthatwassentforwardto theoutputnodewhenmakingaprediction.)Theerrorthatwe’ll attribute
to thehiddennode Í from ¾ is ¾�Îe�x�S13¾�Îg�»µNÎ ÈfÏ È . (If therearemultiple outputunits,we’ll sumtheseerrors
over all outputsto getthetotalerrorattributedto Í .)

In our example, thecorrect answerÌ8È was 
 (Iris A is not versicolor), while thenetworkoutput ¾�È
was 
��
������� . Thustheerror of unit ¾ (which we’ll representby Ï È ) isÏ ÈG!n¾�È��x�N1F¾�È<�f��Ì8È91F¾�È<�v!c
��
���������x�S1F
��
�������W�f�D
"1l�
�������W��!?1N
����Y�����^�

Nowthat wehaveerrors attributedto theoutputlayer, wecancomputetheerror of thehidden
units.WecomputeÏ Å , theerror attributedto hiddenunit ½ .Ï Å^!c¾�Åg�x�N13¾\Å��»µNÅÉÈ Ï ÈN!c
��
��
W��
e�x�`1L
��
��
W��
g�8
��
	P[g�x1N
����Y�����W��!?1N
���
�
W�W�
Andwecomputetheerror ÏfÇ of thehiddenunit ' .ÏfÇ !a¾ Ç �x�N13¾ Ç �»µ Ç5È<Ï È !c
��
���������x�`1F
��
�������W�f�x1N
����K�H[��x1N
����Y�����W��!c
���
�
W���
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Weight update step The last stepof handlingthe training exampleis updatingthe weights. We update
all weightsasfollows (boththosegoingfrom inputsto hiddennodes,andthosegoingfrom hiddennodesto
outputnodes).

Consideroneinput to a sigmoidunit in theANN. Say � is thevaluebeingfed into theinput duringthe
predictionstep,and Ï is theerrorattributedduringtheerror-attribution stepto thesigmoidunit receiving the
input. We’ll add º Ï � to theweightassociatedwith this input.

We’ll usea learningrate º of 
���� here. Here’showtheweightsarechangedfor thistrainingexample.µNÄ6Å ¹ µNÄ6Å�&_º Ï Åg�Ð! 
���
�&X
����s[g�x1N
���
�
W�W���v[g� !?1s
���
�
�
g�µ`/~Å ¹ µ`/~Å�&_º Ï ÅY��/�! 
�����&X
����s[g�x1N
���
�
W�W���v[Y����� ! 
���
W�����µ 7 Å ¹ µ 7 Å�&_º Ï ÅY� 7 !?1N
�����&X
����s[g�x1N
���
�
W�W���v[C���
	 !?1s
����<
W	��µN}6Å ¹ µN}6Å�&_º Ï ÅY�2}N!?1N
�����&X
����s[g�x1N
���
�
W�W���v[g���
	 !?1s
����<
�
W�µ �ÆÅ`¹ µ �ÆÅ &_º Ï Å � � ! 
���
�&X
����s[g�x1N
���
�
W�W���v[K
��
	 !?1s
���
�
�
��µ Ä6Ç ¹ µ Ä6Ç &_º ÏfÇ � ! 
���
�&X
����s[Y
���
�
W��	�[W� ! 
���
�
�
W�µ /~Ç ¹ µ /~Ç &_º ÏfÇ ��/R!?1N
�����&X
����s[Y
���
�
W��	�[<����� !?1s
���
W�����µ 7 Ç ¹ µ 7 Ç &_º ÏfÇ � 7 ! 
��
	s&X
����s[Y
���
�
W��	�[K���
	 ! 
��
	�
��<
µ }6Ç ¹ µ }6Ç &_º ÏfÇ �2}k! 
�����&X
����s[Y
���
�
W��	�[W���
	 ! 
����<
�
��µ �ÆÇ ¹ µ �ÆÇ &_º ÏfÇ �4�Ñ!?1N
�����&X
����s[Y
���
�
W��	�[Y
��
	 !?1s
���
W�����µNÄ6È ¹ µNÄ6È�&Xº Ï È\��! 
�����&X
����s[g�x1N
����Y�����W�v[g� ! 
���
W���W�µ ÅÉÈ�¹ µ ÅÉÈ &_º Ï È ¾ Å ! 
��
	s&X
����s[g�x1N
����Y�����W�v[K
��
��
W��
P! 
����Y�����µ Ç5È ¹ µ Ç5È &Xº Ï È�¾ Ç !?1N
�����&X
����s[g�x1N
����Y�����W�v[K
��
�������h!?1s
����<
g���
Theseare theweightswe’ll usefor our next training example.

Conclusion This is all just for asingletrainingexample.Like in trainingaperceptron,we’d do all of this
for eachof theexamplesin thetrainingset.And we’d repeatit several timesover. It’s not thesortof thing
youcando by hand,thoughacomputercando it prettyeasilyfor smallnetworks.

Just to demonstrate that we’vemadeprogress,let’s seewhat thenetworkwouldpredict if wetried
Iris A again. Wepropagateits attributesthroughthenetwork.¾ Å ! ¿ �x1N
���
�
�
g�S&X
���
W�����^[Y�����s&a�x1N
����<
W	��K�v[C���
	s&a�x1N
����<
�
W�W�v[W���
��&>�x1N
���
�
�
��K��[Y
��
	W�! ¿ �x1N
���
�
W��	W��!c
��d�g����	¾ Ç ! ¿ �D
���
�
�
W�S&>�x1N
���
W�����W��[<������&X
��
	�
��<
�[\���
	s&X
����<
�
��P[W���
��&a�x1N
���
W�����W�v[Y
��
	W�! ¿ �D
��
	������K��!a
��
�W��	\�¾�È�! ¿ �D
���
W���W��&l
����Y������[Y
��d�g����	`&a�x1N
����<
g���W�v[Y
��
�W��	\���! ¿ �D
����f���W
g��!a
��
����
��
Thusthecomputedpredictionfor Iris A is 
��
����
�� , closerto thecorrectanswerof 
 thantheprevi-
ouslypredicted
��
������� . Thisprovidessomeevidencethat theANNhaslearnedsomethingthrough
this training process.

2.2.4 Example

Computationally, backpropagatedANNs aresocomplex thatit’sdifficult to getastronghandleonhow they
work. It’s instructive to look at a moreindustrial-strengthexampleto seehow they might actuallybeused.
Let’s considerthefull iris classificationexampleof Fisher[Fis36].
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Figure2.5: ANN erroragainstiterationsthroughtrainingset.Thethick line is theaverageerrorperevalua-
tion example,andthethin line is theaverageerrorpertrainingexample.

Recall that this setof examplesincludes150 irises,with eachiris having four numericattributesand
a labelclassifyingit amongoneof threespecies.Of the150 irises,we choosea randomsubsetof 100as
trainingexamplesandtheremaining50 for evaluationpurposes.

We’ll modelthis asa two-layerANN. For eachof the four numericattributes,we’ll includean input
nodein theinput layer. In thehiddenlayer, we’ll chooseto usetwo sigmoidunits.And theoutputlayerwill
have a unit for eachof the threepossiblelabels. Whenwe interprettheoutputs,we’ll find theoutputunit
emittingthegreatestoutputandinterprettheANN to bepredictingthecorrespondinglabel.

We usea learningrateof 
���� . For training purposes,a label is encodedas )D
��
� M 
���� M 
����W* for setosa,)D
���� M 
��
� M 
����g* for versicolor, or )D
���� M 
���� M 
��
�e* for virginica. We use 
���� and 
��
� insteadof 
 and � because
a sigmoidunit never actuallyreachesanoutputof 
 or � ; if we encodelabelsusing 
 s and � s, theweights
will graduallybecomemoreandmoreextreme.

When we train, we go throughthe 100 training examplesseveral times. It’s interestingto seehow
theANN improvesasthis continues.We’ll look at theaveragesum-of-squareserror: If theANN outputs)D¾ / M ¾ 7 M ¾ } * andthedesiredoutputis )�Ì / M Ì 7 M Ì } * , thesum-of-squareserroris}- �w.0/ ��Ì8� 1L¾\�~� 7 �
This is anoddquantityto investigate.Wechooseit becausethemathematicsbehindtheerrorattribution and
weightupdateis motivatedby trying to decreasethesum-of-squareserror for any given trainingexample.
(And theresearcherswhodid thederivationchoseit basicallybecausethey foundatechniquefor decreasing
it. Thatcircularity— they discoveredthatthemathematicsworkedif they just choseto try to minimizethis
peculiarerrorfunction— is thesparkof geniusthatmakesbackpropagationwork.)

Figure2.5 graphsthesum-of-squareserroron the � -axisandthenumberof iterationsthroughthedata
seton the � -axis. The thick line is the importantnumber— it’s theaveragesum-of-squareserrorover the
50 evaluationexamples.Thethin line is theaveragesum-of-squareserrorover the100trainingexamples.

Sincethe mathematicsbehindthe backpropagationupdaterule works with a goal of minimizing the
sum-of-squareserror, we expectthat thethin line in this graphis constantlydecreasing.But, then,that im-
provementis on thetrainingexamples:It’s not indicative of generalperformance.Thethick line represents
performanceon the evaluationexamplesthe ANN never trainson, which is indicative of generalperfor-
mance.You canseethat it flattensout after1,000iterationsthroughtheexamplesandthentakesa upward
turnafteranother1,000iterations,despitecontinuedimprovementon thetrainingexamples.

What’s happeningbeyond the 2,000thiteration is overfitting. The neuralnet is adaptingto specific
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anomaliesin the training data,not the generalpicture. If we were running the data,we’d want to stop
aroundthispoint ratherthancontinueonward.

Of course,onecouldarguethatwhatwereallycareaboutis thenumberof evaluationexamplesclassified
correctly, not theaveragesum-of-squareserror. But this supportsthesameconclusionwereachedusingthe
sum-of-squareserror.� By the100thiterationthroughtheexamples,theANN got47of the50correct.� By the1,000th,it wasgetting49 of 50.� Aroundthe2,000thiteration,theANN wasbackto 48 of 50andremainsthere.

Soit wasprobablybestto stopafterthefirst 1,000iterations.(This is just for a singlerun-throughover the
data.Differentrunsgive slightly differentnumbers,dueto thesmallrandomnumberschosenfor theinitial
weightsin thenetwork.)

It’salsoworthwhilelookingathow thebehavior changeswith differentnumbersof hiddenunits.Adding
additionalhiddenunits in this casekeepsthepicturemoreor lessthesame— maybeevenslightly worse
than 	 units.Only onehiddenunit isn’t powerful enough— thenetwork never getsabove �W
 correct.

Typically, peoplefind that there’s somecritical numberof hiddenunits. Below this, theANN performs
poorly. At the critical number, it doeswell. And additionalhiddenunits provide only marginal help if it
helpsatall, at theaddedexpenseof muchmorecomputation.

2.2.5 Analysis

ANNs haveprovento beauseful,if complicated,wayof learning.They adaptto strangeconceptsrelatively
well in many situations.They areoneof themoreimportantresultscomingoutof machinelearning.

Oneof thecomplexities with usingANNs is thenumberof parametersyou cantweakto work with the
databetter. You choosethe representationof attribute vectorsandlabels,the architectureof thenetwork,
thetrainingrate,andhow many iterationsthroughtheexamplesyouwantto do. Theprocessis muchmore
complicatedthansimply feedingthedatainto a linearregressionprogram.Theextendedexamplepresented
in this chapteris intendedto illustratea realisticexample,wherewe hadto make a varietyof decisionsin
orderto getagoodneuralnetwork for predictingiris classification.
Advantages:� Very flexible in thetypesof hypothesesit canrepresent.� Bearssomeresemblanceto avery smallhumanbrain.� Canadaptto new datawith labels.

Disadvantages:� Very difficult to interpretthehypothesisasasimplerule.� Difficult to compute.
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Chapter 3

Reinforcementlearning

Until now we’ve beenworking with supervised learning, wherethe learnergetsinstantfeedbackabout
eachexampleit sees.While this is usefulandinteresting,it doesn’t modelall typesof learning.

Consider, for example,a mousetrying to learnhow to find cheesein a givenmaze.This doesn’t really
fit preciselyinto the supervisedlearningmodel. Whetherthe mousechoosesto go forward, right, or left
doesn’t resultin immediatefeedback— thereis a wholesequenceof actionsthat themousemustlearnin
orderto arriveat thecheese.Thereis sensoryfeedbackalongtheway, but no informationaboutwhetherthe
mouseis on theright trackor not.

Thefield of reinforcementlearning looksat how onemight approacha problemlike this. Two of the
mostprominentpotentialapplicationsof reinforcementlearningaregameplaying androbot learning. In
both, the learnerhasto make a seriesof actionsbeforeachieving the goal,with no direct feedbackabout
whetherit’smakingthecorrectaction.

3.1 Modeling the envir onment

Before we can analyzethis problem,we needsomeway of thinking about it. One of the most useful
techniquesfor thinking abouttheproblemis asastatespace. This is a diagramof how ourworld operates,
including a state for eachsituationthe learnermight be in, and transitions representinghow an action
changesthecurrentsituation.

We’ll beworkingwith thefollowingverysimplestatespacewith just threestates,½ , ' , and Ò .
b

L

L

L

R R
R

ca

Fromeach state, thereare twoactions:Wecanmoveleft (actionL) or wecanmoveright (actionR).
Thisstatespaceis meantto representa verysimplemaze— actually, just a shorthallway— with
four locations.Thecheeseis to theright of Ò ; whenthemousereachesit, thepsychologist picksup
themouseandputsit back at location ½ for anothertrial.

We’ll thinkof themouseasstartingoutat location Ò .
Thisis an unrealisticallysimplestatespace. Butweneedit that simpleto keepwithin thescope

of handcalculation.

Thenotionof reward is crucial to theproblem,sowe needto incorporateit into our modeltoo. We’ll
placea numberon sometransitionsrepresentinghow goodthat actionis. In gameplaying, for example,
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thelastmove beforea gameis won would geta positive number, while thelastmove beforea gameis lost
wouldgetanegative number.

In our example, there is a reward everytimethemousegoesright from Ò , arriving at thecheese. So
we’ll placea reward of �\� on thelong transitionfrom Ò back to state ½ .

Our goalasthe learneris to find a strategy — that is, a mappingassociatinganactionwith eachstate.
Which strategy do we want?To comparestrategies,we definediscountedcumulative reward (or just the
discountedreward) by theinfinite summationºKÄH&ÔÓ2º�/�&ÔÓ 7 º 7 &_Ó } ºK}H&ÔÓ � ºK��&n[<[<[v�
In thisexpression,ºKÕ representstherewardwe receive for the Ì th stepif we follow thestrategy, while Ó is a
number( 
ÑÖ>ÓXÖ¸� ) thatgivesmoredistantrewardslessemphasis.Part of thepoint of Ó is to emphasize
rewardsreceived earlier. But more importantly, it keepsthe sum finite. If we were to leave out the Ó
altogether, thecumulative rewardwouldbeinfinite.

The strategy that we want to learn is the strategy with the maximumdiscountedreward. Why the
discountedrewardandnotsomethingelse?Basically, weusethediscountedrewardbecauseit’sconvenient.
It keepsthemathematicssimpleto have our goal be a combinationof additionsandmultiplications. You
could useanothercriterion for comparingstrategies,andresearchershave examinedseveral, but it makes
thingsmorecomplicated.

We’ll alwaysuseÓk! / B 7 in this chapter.
Theoptimalstrategy for our example, youmightguess,is thefollowing.

bR R
R

ca

To computethediscountedreward, wethink as following. Recallthat wedecidedto begin in stateÒ . Our first action, therefore, moving back to state ½ , givesusa reward of �\� ; thus ºCÄp!·�\� . Our
secondactiontakesusto state ' , at a reward º�/ of 
 . Thethird hasa reward º 7 of 
 , leavingusat Ò .
Thefourthhasa reward ºK} of �\� , leavingusat ½ . Andthiswill continuein cyclesof � .�\�S& ³ �	 ´ 
�& ³ �	 ´ 7 
S& ³ �	 ´ } �\�S& ³ �	 ´ � 
�& ³ �	 ´ � 
�& ³ �	 ´ � �\�S&n[<[<[! �\�`& ³ �	 ´ } �\�S& ³ �	 ´ � �\�S& ³ �	 ´�× �\�S&n[<[<[! �\�`& ³ �� ´ �\�S& ³ �� ´ 7 �\�`& ³ �� ´ } �\�S&n[<[<[! ³ � � ´ �\�P!>��� ��
Thus ��� / BDØ is thediscountedreward of thestrategy depictedabove. In thelast stepof this computa-
tion, weusedthefact that theinfinitesum �0&t� / B Ë �e&l� / B Ë � 7 &X[<[<[ is exactly Ë BDØ . Youmayhavelearned
howto do theseinfinitesumsbefore, but if not,don’t worry — wewon’t useit again.

3.2 Ù learning

Findingtheoptimalstrategy whenwehaveamapof themazeis aninterestingproblem,but it’snot learning
— it’s just computation.In reality, wewon’t haveamap.Eitherwewon’t understandourenvironment(like
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the feeblemouse)or themapwill be too large to explicitly remember(like in gameplaying). At any rate,
we can’t just look at themaze,determinetheoptimalstrategy, andthenplay it out.

In this section,we’ll look at � learning,a specificalgorithmfor learningtheoptimalpolicy developed
in 1989by Watkins[Wat89].

Model What we’ll actually learn are a set of numbersderived from the discountedreward. For each
transitionof the statespace,we’ll learna number: For a state Ú andaction Û from that state,we’ll use�]�5Ú M Û^� to refer to this number, representingthe discountedreward if we start at Ú , take action Û , and
thenfollow theoptimalstrategy from thereon. (Don’t worry — we won’t compute�]�5Ú M Û`� directly in our
algorithm. We can’t, sincewe don’t have a mapto work with. Instead,we’ll graduallyzero in onto the
correctvaluesof �Z�5Ú M Û^� througha seriesof trials,andderive our strategy from that. But understanding�
is key to understanding� learning.)

Hereare theexact � valuesfor our space.
Q ½ ' Ò
L � / BDØ � / BDØ �Y� 7 BDØ
R �Y� 7 BDØ ��� � BDØ ��� / BDØ

For example, weknow �Z�DÒ MÆÜ � is ��� / BDØ becauseit representsthediscountedreward of going right
from Ò andfollowing theoptimalstrategy thereafter—that’s exactlytheactionsequenceweconsid-
eredwhenwecomputeddiscountedreward in Section3.1.

Or consider�]�D½ MÆÝ � . Here wewantthediscountedreward of startingin ½ , goingleft, andthen
followingtheoptimalstrategy thereafter. Afterour firststepof goingleft,wegeta reward ºKÄ of 
 and
are in state ½ . Thesecondstep(nowfollowing theoptimalstrategy) takesusright from ½ , gettinga
reward º�/ of 
 andputtingusin state ' . Thethird stepplacesusin Ò at a reward º 7 of 
 . Thefourth
stepplacesusin ½ at a reward ºC} of �\� . Thefifth stepplacesusin ' at a reward ºY� of 
 . Andsoon.
s& ³ �	 ´ 
�& ³ �	 ´ 7 
s& ³ �	 ´ } �\�`& ³ �	 ´ � 
s& ³ �	 ´ � 
s& ³ �	 ´ � �\�S&n[<[<[! ³ �	 ´ } �\�S& ³ �	 ´ � �\�S& ³ �	 ´H× �\�`&n[<[<[! �s& ³ �� ´ �N& ³ �� ´ 7 �N& ³ �� ´ } �s&n[<[<[! ³ � � ´ �i!a� ��
Andthat’s whywehave � / BDØ in our tablefor �]�D½ MÆÝ � .
The nice thing aboutknowing the � valuesis that knowing themgivesus the optimal strategy: For a

particularstate,to find theoptimal action,we’ll look at the � valuesfor eachactionstartingat that state,
andthentake theactionassociatedwith the largestof these.Thusthediscountedrewardstartingat stateÚ
is definedby thequantity �]�\�Þ �]�5Ú M Û`���

Noticethefollowing propertyof the � values:For any action Û takingusfrom stateÚ to stateÚKß , giving
usanimmediatereward º , wehave �Z�5Ú M Û^�v!nºs&ÔÓ �]�\�Þ4à �]�5Ú ß M Û ß �0�
That is, we get a reward of º immediately, followed by the discountedreward of following the optimal
strategy startingat ÚYß . (We scaledthis discountedrewardby Ó becausewe starttheoptimalstrategy at the
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secondstepandbeyond,whereasthediscountedrewardstartingat Ú ß follows theoptimalstrategy from the
first stepon.)

For example, �Z�5' MÆÜ � in our exampleis ��� � BDØ . Theimmediatereward º is 
 for goingright from ' ,
and �]�DÒ MÆÜ � is thebestactionstarting fromthenew state, Ò , havinga discountedreward of ��� / BDØ .
Usingour formula,wefind thatºs&3Ó �]�\�Þ4à �]�5Ú ß M Û ß �v!c
s&O³ �	 ´á��� �� !a��� � � �

Algorithm We’ll usethis lastobservation,that �]�5Ú M ½��v!nºN&ÔÓ �Z�\� Þ4à �]�5ÚKß M Ûsß�� to defineouralgorithm.

Startwith �]�5Ú M Û^�v!c
 for all statesÚ andactionsÛ .
repeatindefinitely:Ú ¹ currentstate.Û ¹ someactionwe select.

Performaction Û .º ¹ rewardfor performing Û .ÚYß ¹ new stateafterperformingÛ .�]�5Ú M Û`� ¹ ºN&_Ó �]�\� Þ à �]�5Ú ß M Û ß � .end repeat

This is really quite simple: We begin by estimatingall � valuesas 
 . Thenwe wanderaroundthe state
spaceandupdatethe � valuesusingour formulaaswe go.

We start at state Ò ; saywechooseto moveright first. We get a reward of �\� andendup in state ½ .
According to our current � -valueestimates,theestimateddiscountedreward startingat ½ is 
 , so
weupdate�]�DÒ MÆÜ � to be �\�`&a� / B 7 �8
h!a�\� .

Q ½ ' Ò
L 
 
 

R 
 
 �\�

Nowsaywemoveto theright again. Wegeta reward of 
 andendup in state' . Our estimateof
thediscountedreward startingin ' , according to thecurrent � values,is 
 . Soweupdate�]�D½ MÆÜ �to be 
�&a� / B 7 �8
h!c
 (which wasthevaluewehadbefore).

And if wemoveto theright again, weget a reward of 
 andendup in state Ò . Our estimateof
thediscountedreward startingin Ò , according to thecurrent � values,is �\� . Soweupdate�Z�5' MÆÜ �to be 
�&a� / B 7 �x�\�P!a��	 .

Q ½ ' Ò
L 
 
 

R 
 ��	 �\�

Wecontinuedoingthisover timeuntil we’resatisfied.Hereare thenext several steps.Ú Û º ÚYß updateof �Z�5Ú M Û^�Ò L 
 ' �]�DÒ MÆÝ � ¹ 
S&a� / B 7 �x��	i!?�Y�' R 
 Ò �]�5' MÆÜ � ¹ 
S&a� / B 7 �x�\�P!a��	Ò R �\� ½ �]�DÒ MÆÜ � ¹ �\�`&a� / B 7 �â
i!a�\�½ R 
 ' �]�D½ MÆÜ � ¹ 
S&a� / B 7 �x��	i!?�Y�' L 
 ½ �]�5' MÆÝ � ¹ 
S&a� / B 7 ���Y�i! �½ L 
 ½ �]�D½ MÆÝ � ¹ 
S&a� / B 7 ���Y�i! �
Soafterall thesestepsour final estimatesof the � valuesare thefollowing.
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Q ½ ' Ò
L � � �Y�
R �Y� ��	 �\�

This isn’t too far off the correct answer, and if we continuedwanderingwe would get closerand
closerto thecorrect � values.

It doesn’t matterhow we chooseto move here. As long as we occasionallytry out all the possible
transitions,any wayof makingthisselectionis fine. If youwantedto accumulaterewardsasyou learn,you
might tendto selectmovesthathave higher � values.

In situationswhereyou want to accumulatereward asyou learn,you have a conflict of interest. The
learnerwill want to try out actionsthathaven’t beentried too oftenbeforein thesamestate,to gainmore
experiencewith theconsequences.But alsothe learnerwantsto accumulaterewardswhenit can. This is
known astheissueof explorationvsexploitation— balancingit is aninterestingproblem.But we’ll sidestep
it with � learning,becauseit actuallydoesn’t affectwhether� learningworks.

At this point our goal is simply to learn the optimal strategy, not to garnerpointsparticularly. Thus
we canchooseto move however we want. Choosingrandomlyeachstepfrom the availableactions,for
example,isn’t abadidea.

Analysis Theneatthingabout � learningis thatit works,thoughthealgorithmis verysimple.Moreover,
it workswithoutconstructinganexplicit mapof thestatespace,which is importantfrom apracticalpointof
view, sincein practicethemapcangetvery complicated.But � learninghassomeproblemsthatareworth
pointingout.� Thealgorithmdoesn’t work well in a nondeterministicworld. Often,anactiondoesn’t alwayshave

thesameconsequences.This is obviously true in gameplaying,wheneachactionis followedby an
opponent’s move, which theplayercannotpredict. It’s alsotrue in robot learning,asthe realworld
oftendoesn’t behave exactly aspredicted.For example,a robotbuilding a tower of blocksmayfind
thatagustof wind blows thetower overunexpectedly.

The � learningalgorithmwe’ve seenforgetseverythingthat’s happenedbeforewhenit’s performed
theactionandreplacesit with thenew observation. Thatworksfine in a perfectnonrandomworld,
whenevery actioninvariablyleadsto thesamesituation,but not in morerealisticsituations.� Thealgorithmlearnsmoreslowly thanwe might hope. Whatwill happenis thateachtime through
themaze,thealgorithmextendsits knowledgeonestepbackward. In our example,we learnedthat
moving from Ò to ½ wasa goodmove thefirst time; thenthenext time throughthemazewe learned
to move from ' to Ò ; andthenthenext time throughwe learnedto move from ½ to ' . But we should
have figuredoutearlierthatit is agoodideato move from ½ to ' .� For problemsof a realisticsize,hopingto go throughall possiblestatesis simply not realistic. In a
chessgame,for example,therearesomany statesthatwecanneverhopeto visit everysinglepossible
boardthatmight show up duringagame.

In thenext two sections,we’ll seewaysof refining � learningto addressthefirst two issues.Thethird issue,
however, is moreendemicto theoverallmodelthatasimplepatchisn’t goingto solve.

Thisproblemis oneof generalizing from whatwehave learned.Thatis, weneedto somehow recognize
that two statesaresimilar andso if an actionis goodfor one,a similar actionis goodfor the other. This
is somethingthat will be moredomain-specificthanour state-spaceabstractionallows: In the statespace
abstraction,eachstateis completelyincomparableto the rest. We’ve abstractedaway all detailsaboutthe
characteristicsof thestate.
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Peopledon’t really have a goodway of handlingthis in general.We’ll look at thetwo mostprominent
successfulapplicationsof reinforcementlearningtechniquesatthecloseof thischapter. In bothapplications,
they facedthis problemof not beingableto hopeto visit all possiblestates,andwe’ll seehow they resolve
it in theirparticularsituations.

3.3 Nondeterministic worlds

To addressnondeterministicconsequencesof actions,we’ll be lessextremein our updateof � . Before,
we changed�]�5Ú M Û`� to ºS&_Ó �]�\� Þ à �Z�5Ú M Û ß � , forgettingeverythingwe hadlearnedabout �Z�5Ú M Û^� before.
Instead,whatwe’ll do is average thecurrentvalueof �]�5Ú M Û^� with thisnew observation.

Thealgorithmproceedsin thesameway, but we’ll altertheupdaterule to thefollowing.�Z�5Ú M Û^� ¹ �x�N1Ôã��6�Z�5Ú M Û^��&lãÔ³�ºs&ÔÓ �]�\�Þ à �]�5Ú ß M Û ß �»´
Here, ã (which we choosefrom 
�Ö¯ãaäO� ) is a parameterthat tells ushow muchweight to give the

new observationandhow muchweightto give to thevaluewe wererememberingearlier. If ã is small,this
indicatesthatwewantto give lotsof weightto old valuesof � , sothatwe improveourestimateonly slowly
over time. If ã is large,wewantto givemoreweightto thenew values,sothatwe learnmorerapidlyat the
expenseof therisk of overemphasizingrareconsequencesof ouractions.

In practice,you want to usea large ã at thebeginningwhenthe � valuesdon’t reflectany experience
(andsoyou might aswell adaptquickly), andyou want to reduceã asyou gainmoreexperience.A very
sensiblechoicechangesã with eachactionto �KB��x�S& � � , where � representsthe numberof timeswe’ve
performedtheactionfrom thatparticularstatepreviously.

In our world, wedon’t needthis alternativeformulationbecauseour world is deterministic.Thus
wemightaswell use ãt!$� , which givesus thesamealgorithmweusedbefore. But if we instead
chooseã to be �KB��x��& � � , weendup with thefollowing tableafter thesamesequenceof actionswe
performedbefore.

Q ½ ' Ò
L � � �Y�
R � ��	 �\�

We haven’t gottenas closeto the correct � valueshere as we did in Scetion3.2. But, then,we
intentionallymodifiedour original algorithmto adaptmoreslowly.

3.4 Fastadaptation

A more radical changeis trying to make the algorithm so that eachreward is immediatelypropagated
backward to actionsperformedin the past. The idea here is to speedup the learningprocess,so less
wanderingis required.

Here’s onesolution. What we’re going to do is to maintainan Í -valuefor eachtransitionof thestate
space.This Í -valuecontinuallydecays,ata rateof Ó=å aftereachaction.The å parameter(with 
]äUåÑä>� )
controlshow mucheffect a futurerewardhason acurrentaction.

The Í -valuesstartout at 
 , but eachtime we usea transitionwe’ll addoneto its Í -value. But it will
rapidlydecaybackto zero(at a rateof Ó=å pertimestep)asfutureactionsareperformed.

Startwith �]�5Ú M Û^�v!c
 and Í0�5Ú M Û^�H!a
 for all statesÚ andactionsÛ .
repeatindefinitely:Ú ¹ currentstate.
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Performaction Û .º ¹ rewardfor performing Û .ÚYß ¹ new stateafterperformingÛ .Ï ¹ 1��]�5Ú M Û`��&_ºG&_Ó �]�\� Þ4à �]�5ÚKß M Û�ß�� .Í��5Ú M Û`� ¹ Í��5Ú M Û`�0&c� .
for eachstateÚYß ß andeachaction Ûsß ß , do:�]�5Ú ß ß M Û ß ß � ¹ �]�5Ú ß ß M Û ß ß �+&lã Ï Í��5Ú ß ß M Û ß ß � .Í��5ÚKß ß M Û�ß ß�� ¹ Ó+å4Í��5ÚKß ß M Ûsß ß�� .end for

end repeat

We’ll use ãL!?� , Ók! / B 7 , and åá! / B 7 .
Thingsstart out thesame. If we begin at Ò andmoveright, we get a reward of �\� andgo into

state ½ , whoseestimateddiscountedreward is 
 . Sowe’ll computeÏ as 1N
�&l�\�`&a� / B 7 �8
h!a�\� , and
we’ll add � to Í0�DÒ MÆÜ � .

Now whenwe go througheach Ú ß ß and Û ß ß , the only non-zero Í -valueis Í��DÒ MÆÜ �p!æ� . Sothe
only � -valuethat changes is �]�DÒ MÆÜ � , which changes to 
h&cã Ï �k!$�\� . Each Í -valuedecaysbyÓ=åá!?� / B 7 �f� / B 7 �v! / B � . Thusafterour first actionthe � - and Í -valuesareasfollows.

Q ½ ' Ò
L 
 
 

R 
 
 �\� h ½ ' Ò

L 
 
 

R 
 
 / B �

Our secondactiongivesusa reward of 
 andplacesus in state ' , whoseestimateddiscounted
reward is 
 . WecomputeÏ as 1N
G&F
G&n� / B 7 �8
h!c
 . SinceÏ !c
 , no � -valueswill change, thoughof
coursethe Í -valuesdecaybya factor of / B � again.

Q ½ ' Ò
L 
 
 

R 
 
 �\� h ½ ' Ò

L 
 
 

R / B � 
 / B /~�

Sofar the � -valuesare just as in our first example. But for the third action, whenwe move
right from ' to earna reward of 
 andendup in state Ò , where theestimateddiscountedreward is�\� , we’ll seesomethingdifferent. This timewecomputeÏ to be 1N
`&Q
`&(� / B 7 �x�\�â!?��	 . Asbefore,�Z�5' MÆÜ � will change to 
�&Q��	`[g��!a��	 . Butalso,since Í��D½ MÆÜ �v! / B � , thevalue �Z�D½ MÆÜ � changesto
�&Q��	`[ / B � !a� . Moreover, �Z�DÒ MÆÜ � changesto �\�S&l��	`[ / B /~� !>��� . Sowenowhavethefollowing.

Q ½ ' Ò
L 
 
 

R � ��	 ��� h ½ ' Ò

L 
 
 

R / B /~� / B � / B �x�

What’s happenedhere is that we got an estimatedfuture reward for moving into Ò , and this new
algorithmhaspropagatedthis future reward to our pastactionsalso— a fractionof it to theaction
of moving right from ½ , andevena fractionto theactionof moving right from Ò .

Were we to continuethroughthe entire examplewe’ve beenusing, we’d find that the final � -
valuesare asfollows.

Q ½ ' Ò
L ���d��� �<
������ �Y���
���
R �Y���d��� �\���
	\� ���������

Thesehavegottenvery closeto the exact valueswith what’s really a pretty short time wandering
throughthestatespace.
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3.5 TD learning

Temporal differencelearning is an alternative algorithmto � learningoriginally proposedby Suttonin
1988[Sut88].

Actually, it’s closelyrelatedto � learning.It’s evena little simpler. Thedifferenceis that,while the �
learningalgorithmlearnsthediscountedrewardbeginningat eachtransitionin thestatespace,TD learning
learnsthediscountedreward çR�5Ú�� for eachstate Ú of thestatespace.Everythingelseremainsthesame.

Thus,thesimplestversionof TD learning(analogousto the � learningalgorithmof Section3.2)revises
theupdaterule to thefollowing. çZ�5Ú�� ¹ ºN&ÔÓ+çá�5Ú ß �
Like � learning,TD learningcanbemodifiedasin Sections3.3and3.4.

In situationswherethestatespaceis known (asin gameplaying),TD learningmakessense.Because
you’relearningavaluefor eachstate,noteachpossibleactionfromeachstate,youhavemany fewernumbers
to learn.Thuslessexplorationis requiredto find agoodsolution.

But in situationswherethe statespaceis unknown, TD learningis impractical. After all, what we’re
afteris learningtheoptimalactionfrom eachstateof thespace.To figureout theoptimalactionfor Ú given
thespace’s ç -values,wewould look througheachpossibleactionfrom Ú , take thereward º andsubsequent
stateÚ ß for thataction,andsaythat theoptimalactionis theactionfor which ºS&lÓ+çR�5Ú ß � is largest.But if
we don’t understandthestatespace,we don’t know º or ÚYß , andsowecan’t performthiscomputation.

ThusTD learningis frequentlysuperiorto � learningwhenwe know thestatespace,andTD learning
is inappropriateif we don’t.

3.6 Applications

As we saw in Section3.2, � learning— and,indeed,thewholestate-spacemodel— hasa fatalproblem:
Theworld is just toocomplicatedfor usto hopeto go throughmostreal-lifestatespaces.

Muchof currentresearcharoundreinforcementlearninginvolveslookingatpracticalapplicationsdemon-
stratingtechniquesfor gettingaroundthisdifficulty of tacklinghugestatespaces.Resultshave beenmixed.
We’ll look at two of themoresignificantsuccesses.

3.6.1 TD-Gammon

Thefirst big reinforcementlearningsuccessis certainlyTD-Gammon,a backgammon-playingsystemde-
velopedby Tesauroin theearly1990’s [Tes95].

Althoughwe’renotgoingto look at thespecificsof backgammonhere,theimportantthing to know that
thereis a setof piecesyou aretrying to move to goalpositions.Eachturn, the playerrolls a pair of dice
andmustchoosefrom a setof movesdictatedby thatroll. Conventionalgame-playingtechniqueshave not
appliedwell to Backgammon,asthenumberof possiblemovesin eachturn is unusuallylarge (about400,
versusabout40 for chess),especiallyif youmustconsiderall possibledicerolls.

TesaurousedTD learning,but thenumberof statesin backgammonin too overwhelmingto consider.
Ratherthan tabulate all possiblestates,TD-Gammonemployed a neuralnetwork to approximatethe ç -
valuesfor eachstateof thenetwork. In thefirst version(version0.0),theneuralnetwork had �Y��� inputunits
for representingthecurrentboard,�W
 hiddenunits,andasingleoutputto representtheestimatefor theinput
board’s ç -value.

To choosea move, therefore,you hadonly to try eachof the possiblemovesandseewhich resulting
boardstategivesthe greatestç -value. Thenyou take that move. Generallythe reward will be 
 , asyou
don’t receive a rewardor penaltyuntil thegameis wonor lost. Fromhereyoucantrain thenetwork, justas
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is donein regularTD learning.(TesaurousedtheTD equivalentof the � -learningalgorithmof Section2.4,
using åá!c
���� .)

By training the network on 200,000gamesagainstitself, Tesaurofound that TD-Gammonperformed
aboutaswell asoneof thebestcomputerbackgammonplayersof thetime,Neurogammon(alsoby Tesauro).
This wasshocking,asNeurogammonhadbeenwritten specificallyto play backgammon,with muchspe-
cializedknowledgebuilt into it, while TD-Gammonhadnearlyno backgammonknowledgeoutsideof the
rules.

Encouragedby thiswork, TesaurodevelopedTD-Gammon1.0.Thebasicchangefor thiswasto change
the inputs to the neuralnetwork to representmore complex conceptsthat backgammonmastersfeel are
important things abouta boardstate— whethercrucial positionsare blocked, how closepiecesare to
winning,etc. In otherwords,this new versionincorporatedsomeof theadvancedbackgammontheorythat
Neurogammonhad. TD-Gammon1.0 had ��
 hiddenunits and trainedon itself with 300,000games. It
playedcompetitively with humanchampions,but notata level whereit might win a world championship.

Subsequentversionsof TD-Gammonhavemadetheprogramlook morethanonemovein advance,tak-
ing someadvantageof classicalminimaxsearch.Thecurrentversion,TD-Gammon3.1,is widely regarded
asrankingamongthe bestbackgammonplayersin the world (humanor computer),andvery capableof
winning aworld championshipif admitted.

Peoplehave tried duplicatingthis work in othergames,especiallychessandgo. The resultsof these
attemptshave beenencouragingbut not asnoteworthy asTD-Gammon:Theprogramslearnto play well,
but notnearthelevel of humanchampions.

3.6.2 Elevator scheduling

Schedulingelevatorsin a building is an importantproblem. Researcherslike it becauseit’s simple and
practical. Unfortunately, they don’t get to seetheir work put into practice— or at leastthey don’t know
aboutit: Elevatormanufacturersjealouslyprotecttheschedulingalgorithmsthey use,asthis is partof their
competitive edgeoverotherelevatormanufacturers.

CritesandBarto, however, canpride themselves on having oneof the bestpublishedalgorithmsfor
schedulingelevators[CB96]. (We don’t have a way of comparingto themanufacturers’unpublishedalgo-
rithms.)Moreover, their techniqueusesreinforcementlearning.

In their study, CritesandBartoconcentratedon schedulingfour elevatorsin a ten-storybuilding during
the 5:00 rush(whennearlyall passengerswish to go to the lobby to leave for home). In their simulated
system,eachof thefour elevatorshaswithin it tenbuttons,andeachfloor hasanup anda down buttonon
it. At any point in time, eachelevator hasa location,direction,andspeed;andeachbutton pressedon a
floor hasa “waiting time” associatedwith it, sayinghow long it hasbeensincetheprospective passenger
requestedanelevator.

This is aworld with many states.CritesandBartoconservatively estimatethatit hasat least �<
 767 states,
far morethanwecouldvisit in thecourseof learninghow to behave in eachstate.

An actionin this statespacegivesthebehavior of theelevators. An elevator may decideto go up, go
down, or stayin its currentlocationto unloador loadpassengers.Thepenaltyfor anactioncanbecomputed
asthe sumsof thesquaresof the waiting time for any passengersloadedby theelevatorsduring the time
step.(We squarethewaiting time becauserealisticallywe want to give passengerswho have beenwaiting
quitelonga largeradvantage.)

Noticethatoneaspectof this scenariois thatwe can’t predicttheresultof anaction,becausewe can’t
predictwherepotentialpassengersaregoing to appearrequestingan elevator. Thus, � learningis more
applicablethanTD learningfor thisproblem.

But westill have theproblemof all thosestatesthatwecan’t visit thoroughlyduringtraining.Critesand
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Bartousedseveraltechniquesto bringthestatespacedown to amorereasonablelevel. Onethingthey did to
simplify theproblemwasto addadditionalconstraintson possibleactions— constraintsthatyou probably
needanyway. For example,anelevatorcannotpassa floor if a passengerwithin theelevatorhasrequested
a stopon thatfloor. Nor cananelevator reversedirectionif a passengerhasrequesteda floor in thecurrent
direction.Theseconstraintsreducethenumberof decisionsthattheelevatorshave to make.

Despitetheseconstraints,elevatorsmuststill make somechoices.Namely, whenanelevator reachesa
floor whereapassengeriswaiting,shouldit stop?(Youmayexpectit to alwaysstopfor potentialpassengers,
but if anotherelevator is stoppingthereanyway becauseit is carryinga passengerthere,why wastetime?
Or perhapstheelevatorwantsdesperatelyto reachapersonwhohasbeenwaiting longer.)

CritesandBartodecidedto make theelevatorsmake their decisionsindependently. This will hurt per-
formance,asmorecentralizedcontrolwill allow elevatorsto bandtogetherto tackletheir passengersmore
effectively. But makingthemindependentsimplifiesthe setof actionsfrom which the learningalgorithm
mustchooseto just two: Whenwe reachawaiting passenger, do we stopor not?

But therearestill lots of statesto consider— too many to hopeto apply � learningdirectly. Thefinal
techniquethatCritesandBartoemploy is to usea neuralnetwork to approximatethe � values,similar to
how Tesaurousedaneuralnetwork to approximateç valuesin TD learning.

RecallthatCritesandBarto have their elevatorsmake decisionsindependently, soeachnetwork com-
putesthe � -valuefor only two actions.After muchexperimentation,they settledon a network of ��� input
unitsand 	 outputunits.Thetwo outputunitsrepresentthetwo possibleactions.

The ��� input unitsrepresentdifferentcharacteristicsof thecurrentstate,andit is herethatyou cansee
how CritesandBartomusthave tried a lot of thingsbeforesettlingdown on these��� units. �Y� of theunits
representedthebuttonsin thehallways— oneunit for eachfloor representingwhetheradown passengeris
still pending,andoneunit for eachfloor representinghow long thatdown passengerhasbeenpending. �Y�
unitsrepresentedthecurrentlocationanddirectionof theelevator in question.Another �<
 unitssaywhich
floors have the otherelevators. Oneunit sayswhethertheelevator in questionis at thehighestfloor with
anelevator request,oneunit sayswhethertheelevator in questionis at thefloor with theoldestunsatisfied
elevatorrequest,andthefinal unit is aconstant-� input.

They trainedtheirnetwork in asimulatedsystemandcomparedtheirresultswith thoseof many otheral-
gorithms.Whatthey foundis thatthestrategy learnedby � learningandtheirneuralnetwork outperformed
thepreviousadhocalgorithmsdesignedby humansfor elevatorscheduling.Thisdoesn’t necessarilyimply
that � learningis thebestalgorithmfor elevator scheduling,but it doesillustratea situationwhereit has
provensuccessful.
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