
The science of computing: Study questions
first edition

by Carl Burch

Copyright c
�

2004, by Carl Burch. This publication may be redistributed, in part or in whole, provided that
this page is included. A complete version, and additional resources, are available on the Web at

http://www.cburch.com/socs/

Questions S1

This document contains study questions to help in studying the material covered in the textbook, The
science of computing. Most questions come from previous tests given by the author.

Each question’s label has two parts separated by a dash. Question 3.2–1, for example, is the first study
question for the material covered in Section 3.2 of The science of computing.

Question 2.1–1: (Solution, p S16) For each of the following circuits, write a truth table tabulating the
circuit’s output for each combination of inputs.

a.
x

y

b.

y

x

c.
x

z

y

Question 2.1–2: (Solution, p S16) How deep is each of the circuits appearing in Question 2.1–1?

Question 2.2–1: (Solution, p S16) For each of the following circuits, write the Boolean expression that
most closely corresponds to the circuit.

a. The circuit of Question 2.1–1(b)

b.

y

x

c. The circuit of Question 2.1–1(c)

Question 2.2–2: (Solution, p S16) Draw a circuit representing each of the following Boolean expressions.
a. �

�����
�

b. �
���
�
�

Question 2.2–3: (Solution, p S16) For each of the following Boolean expressions, write a truth table
tabulating the expression’s value for each combination of variable values.

a. �
�
�
���

b. �
���
�
���

Question 2.2–4: (Solution, p S17) For each of the following, draw a smaller circuit (i.e., fewer gates)
accomplishing the same task as the circuit given.

a.

x

y

b.

y

x

z

S2 Questions

Question 2.2–5: (Solution, p S17) What is the unsimplified sum-of-products expression for the following
truth tables? (Use multiplication for AND, addition for OR.)

a. �
�

out
0 0 1
0 1 0
1 0 1
1 1 0

b. �
�

out
0 0 1
0 1 1
1 0 0
1 1 1

c. �
� �

out
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Question 2.3–1: (Solution, p S17) Simplify the following sum-of-products expressions. For those that
cannot be simplified using the technique from Section 2.3, you may simply state this fact.

a. �
� �
�
���
�
�

b. �
� � �

�
� � �

�
� � �

�
� �

c. �
� � �

�
� � �

�
� � �

�
� � �

�
� �

Question 2.3–2: (Solution, p S17) Construct a simplified Boolean expression corresponding to the follow-
ing truth table.
�
� �

output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Question 3.1–1: (Solution, p S17) How many bits do you need to represent seven different values? Nine?
Twelve? Thirty?

Question 3.1–2: (Solution, p S17) How many bits are in a kilobyte of memory?

Question 3.1–3: (Solution, p S17) Perform each of the following conversions.
a. 101101 ����� to decimal
b. 1010101 ����� to decimal
c. 23 ���	��� to binary
d. 95 ���	��� to binary

Question 3.1–4: (Solution, p S17) Perform each of the following conversions.
a. 1010101 ����� to octal
b. 1010101 ����� to hexadecimal
c. 101101 ����� to hexadecimal
d. 560 ��
�� to binary
e. CAB ���	��� to binary
f. 1B2 ���	��� to binary

Questions S3

Question 3.2–1: (Solution, p S17) Represent each of the following in a sign-magnitude representation.
a. � 1 � �	��� in a seven-bit sign-magnitude format
b. � 20 � �	��� in a seven-bit sign-magnitude format
c. 20 � �	��� in a seven-bit sign-magnitude format
d. � 300 � �	��� in twelve-bit sign-magnitude format

Question 3.2–2: (Solution, p S17) Represent each of the following in a two’s-complement representation.
a. � 1 � �	��� in a seven-bit two’s-complement format
b. � 20 � �	��� in a seven-bit two’s-complement format
c. 20 � �	��� in a seven-bit two’s-complement format
d. � 300 � �	��� in twelve-bit two’s-complement format

Question 3.2–3: (Solution, p S18)

a. What is the smallest (most negative) number you can represent in seven bits using sign-magnitude
representation? Give both the bit pattern of the number and its base-10 translation.

b. Answer the same question for a seven-bit two’s-complement representation.

Question 3.3–1: (Solution, p S18) Convert each of the following decimal numbers to the 8-bit floating-point
representation described in Section 3.3.

a. 1.0
b. 0.25
c. 10.0
d. � 2.5
e. 0.0625

Question 3.3–2: (Solution, p S18) According to the floating-point representation described in Section 3.3,
what number does each of the following bit patterns represent? Express your answers in base-10, either as
a decimal number or as a fraction.

a. 0 0110 101
b. 1 1011 001
c. 1 0111 110
d. 1 1010 101

Question 3.3–3: (Solution, p S18) Suppose we define a six-bit floating point system with one sign bit, three
exponent bits (using excess 3), and two mantissa bits.

a. Represent each of the following decimal numbers in this six-bit system.

5 � �	���

� 2 � �	���

b. For each of the following bit patterns in this six-bit floating-point system, express its base-10 numer-
ical equivalent as a decimal number or as a fraction.

0 001 10
1 110 01

S4 Questions

Question 3.3–4: (Solution, p S18) Suppose we define a nine-bit floating point system with one sign bit,
five exponent bits (using excess 15), and three mantissa bits.

a. Represent each of the following decimal numbers in this nine-bit system.

1 � �	���

� 6 � �	���

b. For each of the following bit patterns in this nine-bit floating-point system, express its base-10 numer-
ical equivalent as a decimal number or as a fraction.

0 10000 010
1 10011 110

Question 3.4–1: (Solution, p S18) Suppose a digital camera uses a
���

MB disk to store pictures. How
many ����� -inch photographs can it store in 24-bit color at the standard printer-quality resolution of 300
pixels per inch? (You’ll need a calculator for this one.)

Question 3.4–2: (Solution, p S18) We examined a compression technique called run-length encoding for
black-and-white images, in which each byte includes four bits saying how many adjacent black pixels there
are and four bits saying how many adjacent white pixels there are. As we saw, this compression technique
sometimes actually expands a picture. What is the maximum possible expansion factor?

Question 4.1–1: (Solution, p S18) Draw two truth tables illustrating the outputs of a half-adder, one table
for the �
	�� output and the other for the

�����
� output.

Question 4.1–2: (Solution, p S18) Fill in the truth table at right for the following circuit. Ignore rows not
included in the table.

half
adder

half
adder

 carry

 sum

 sum

 carry

y

x

c

b

a

� � � �
�

0 1 1
1 0 1
1 1 0
1 1 1

Question 4.1–3: (Solution, p S18) What distinguishes the behavior of a half adder from that of a full-adder?
(That is, are their inputs or outputs different? Is the relationship between inputs and outputs different?)

Question 4.1–4: (Solution, p S19) Draw a truth table diagramming a full adder’s �����
� output.

Question 4.1–5: (Solution, p S19) Design a full adder using only half adders. Your design must not include
any logic gates, such as AND, OR, and NOT gates.

Question 4.1–6: (Solution, p S19) Using only four-bit adders, construct an eight-bit adder. Each four-bit
adder has two four-bit inputs and one five-bit output. Your eight-bit adder should have two eight-bit inputs
and a one eight-bit output (don’t worry about the ninth output bit).

Questions S5

Question 4.2–1: (Solution, p S19)
For the circuit below, fill in the truth table at right to represent how
the value of � changes based on the inputs � and

�
. Notice that

you should ignore two of the rows.

Q

x

y

�
�

old � new �
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0 (ignore)
1 0 1 (ignore)
1 1 0
1 1 1

Question 4.2–2: (Solution, p S19) How is a D flip-flop’s behavior different from a D latch’s behavior?

Question 4.2–3: (Solution, p S20)
Suppose the upper D flip-flop in the below circuit were holding 1
and the lower D flip-flop held 0, while the � input were 0. At right,
tabulate how the circuit’s output changes as the input � toggles
between 0 and 1.

Q
0

Q
1

Q

Q

x

 D Q

 D Q

1

Q
0

Q

� � � � �

0 1 0
1
0
1
0
1
0
1

Question 4.2–4: (Solution, p S20)
Suppose that both of the flip-flops in the below circuit currently
hold 0. Tabulate how the circuit at left changes as the input
��
toggles through the inputs at left.

ck

Q
1

Q
0Q

0 Q

 D Q

Q
1 Q

 D Q

�� � � � �

0
1
0
1
0
1
0
1
0
1

S6 Questions

Question 4.3–1: (Solution, p S20) Draw a circuit with a single input � and a single output, where the output
toggles to a different value each time � changes from 0 to 1. (Your circuit may incorporate D flip-flops.)
The following table illustrates how your circuit would chaneg.
� � explanation
0 0
1 1 � changes to 1, so � changes
0 1 � changes to 0; � remains at 1
1 0 � changes to 1, so � changes
0 0 � changes to 0; � remains at 0
1 1 � changes to 1, so � changes
0 1 � changes to 0; � remains at 1
1 0 � changes to 1, so � changes

Question 4.3–2: (Solution, p S20) Design a circuit that takes a single input
�� and outputs two bits
� � � � , whose values cycle to the next number of the sequence

� ��� ������������� ��� � ��� ������������� ���
	�	
	
each time

�� changes from 0 to 1. (Note that this is not a two-bit counter: 11 comes after 10.)

Question 5.1–1: (Solution, p S20) Define the fetch-execute cycle as it relates to a computer processing a
program. Your definition should describe the primary purpose of each phase.

Question 5.1–2: (Solution, p S20) Explain in detail what the HYMN CPU does during the fetch phase of
the fetch-execute cycle. (Your explanation should describe how the computer accesses values in registers
and memory.)

Question 5.1–3: (Solution, p S20) Translate each of the following HYMN instructions into machine code.
Express your answers in binary.

a. HALT

b. ADD 14 � �	���

c. LOAD 12 � �	���

d. JUMP 03 � �	���

Question 5.1–4: (Solution, p S21) Suppose that the HYMN CPU begins with the following in memory.

addr data (translation)
00000 100 00100 LOAD 00100
00001 110 00101 ADD 00101
00010 111 00100 SUB 00100
00011 101 00111 STORE 00111
00100 000 00101 HALT
00101 000 00110 HALT

a. Show the hexadecimal values taken on by the registers as this program executes. (Stop once the
computer executes a HALT instruction.)

PC 00
IR 00
AC 00

b. What memory locations, if any, change? What values are stored in these locations?

Questions S7

Question 5.2–1: (Solution, p S21) Suppose that the HYMN CPU begins with the following in memory.

addr data (translation)
00000 100 11110 LOAD 11110
00001 101 11111 STORE 11111
00010 110 11110 ADD 11110
00011 101 11111 STORE 11111
00100 110 11110 ADD 11110
00101 101 11111 STORE 11111
00111 000 00000 HALT

If the user typed multiples of 25 starting at 25 (25, then 50, then 75,. . .) when prompted, what would the
computer display?

Question 5.2–2: (Solution, p S21) Suppose that the HYMN CPU begins with the following in memory.

addr data (translation)
00000 100 11110 LOAD 11110
00001 110 11110 ADD 11110
00010 011 00001 JPOS 00001
00011 000 00000 HALT

If we repeatedly type the number 32 ���	��� when prompted, how many times would we type it before the
computer halts?

Question 5.2–3: (Solution, p S21) Suppose we want HYMN to read a number � from the user and then
output � ��� . What should be in the computer’s memory when the HYMN CPU begins? (Express your
answer in bits.)

addr data
00000
00001
00010
00011
00100

addr data
00101
00110
00111
01000
01001

Question 5.2–4: (Solution, p S21) What should we place into memory so that, when started, HYMN
displays the powers of two from 1 � �	��� to 64 ���	��� before halting? (Express your answer in bits.)

addr data
00000
00001
00010
00011
00100

addr data
00101
00110
00111
01000
01001

S8 Questions

Question 5.2–5: (Solution, p S21)
Suppose that the HYMN CPU begins with mem-
ory contents at right.

a. List all new values stored in memory as the
program executes. Express your answers in
binary or hexadecimal.

b. What values does the AC hold in the course
of executing this program? Express your
answers in binary or hexadecimal.

addr data (translation)
00000 100 01001 LOAD 01001
00001 010 01000 JZER 01000
00010 110 01010 ADD 01010
00011 101 01010 STORE 01010
00100 100 01001 LOAD 01001
00101 110 00000 ADD 00000
00110 101 00000 STORE 00000
00111 001 00000 JUMP 00000
01000 000 00000 HALT
01001 000 00001 1
01010 000 00010 2
01011 000 00100 4
01100 000 00000 0

Question 5.3–1: (Solution, p S21) Translate the following HYMN assembly language program into ma-
chine language. Express your answer in bits.

READ
top: WRITE

ADD one
JPOS top
HALT

one: 1

addr data
00000
00001
00010
00011
00100
00101
00110
00111

Question 5.3–2: (Solution, p S22) Translate the following HYMN assembly language program into ma-
chine language.

up: READ
JZER done
STORE n
JUMP up

done: LOAD n
WRITE
HALT

n: 0

addr data
00000
00001
00010
00011
00100

addr data
00101
00110
00111
01000
01001

Question 5.3–3: (Solution, p S22) Write a HYMN assembly language program that reads a number � and
displays the value

�
�
� � .

Question 5.3–4: (Solution, p S22) Write a HYMN assembly language program that repeatedly reads
numbers from the user until the user types 5.

Questions S9

Question 5.3–5: (Solution, p S22) Write a HYMN assembly language program that displays 100 copies of
the number 0.

Question 5.3–6: (Solution, p S22) Write a HYMN assembly language program that reads a number � from
the user and then displays � ’s absolute value. (The absolute value of a number is that number with any
negative sign removed. The absolute value of � � is 5, while the absolute value of 3 is 3 itself.)

Question 5.3–7: (Solution, p S23) Write a HYMN assembly language program that reads a number � and
displays the powers of two that are less than � . Your program may assume that � is positive.

Question 5.4–1: (Solution, p S23)
Translate each of the following pseudocode procedures into HYMN’s assembly language.

a.
Read � .
while �

�� �
, do:

Write
�
.

Read � .
end while
Stop.

b.
Initialize �
	�� to 0.
Read � .
while �

�� �
, do:

Increase �
	�� by � .
Read � .

end while
Write ��	 � .
Stop.

Question 5.4–2: (Solution, p S23) Express in pseudocode an algorithm to read a number and display its
absolute value.

Question 5.4–3: (Solution, p S23) Express in pseudocode an algorithm to read
� � �

numbers and then to
display the maximum among the numbers typed.

Question 6.2–1: (Solution, p S24) The text describes three purposes of the operating system. Give two of
them.

Question 6.2–2: (Solution, p S24) Among the three purposes of the operating system described by the
text is, “The operating system abstracts computer resources.” Explain what this sentence means, with an
example.

Question 6.3–1: (Solution, p S24) Describe the procedure an operating system performs to switch the
process running on a CPU.

S10 Questions

Question 6.3–2: (Solution, p S24) Say our computer has a time slice of 2 ms, and it takes 1 ms to perform
a context switch and 2 ms to access the disk. There are two processes in execution.

Process A Process B
compute 1 ms compute 1 ms
access disk access disk
compute 3 ms compute 1 ms

Complete the following table to show how the operating system will schedule these processes on the CPU.
The front of each queue is the left end. There may be more blanks than necessary.

time CPU ready disk
0 AB

Question 6.3–3: (Solution, p S25) Suppose our computer system uses virtual memory with 12 pages, called
� � ,

� � , . . . ,
� � � . Further, suppose that the system contains seven page frames, where each frame contains a

page as follows.

frame page
� � ���
� � ���
��� � �
� � ���
��� � �	�
� � ���
� � � �

Draw a diagram of the page table.

Question 6.3–4: (Solution, p S25) Suppose we have a system using paging, and a program requests to load
memory occurring in page 9 of virtual memory. Suppose, moreover, that page 9 happens currently to be in
page frame 3 of RAM. Outline the process the system goes through in locating the data requested.

Question 7.1–1: (Solution, p S25) The game of Nim proceeds by players taking turns selecting a pile and
removing stones from that pile. The player removing the last stone wins.
Draw a complete game tree for the game of Nim beginning with two piles, both containing two stones. To
draw a node, list the number of stones in each pile; for example, the top node will be “2,2.”
Do not include the minimax values assigned to each node in your tree.

Questions S11

Question 7.1–2: (Solution, p S25) Label all internal nodes of the following tic-tac-toe game tree with the
value that minimax search would compute. I’ve already labeled the leaves.

100

100

00

−100

Question 7.1–3: (Solution, p S26)
Suppose a game player has constructed a
game tree as given at right. In this tree,
high numbers represent good boards for
X, and it is currently X’s move. (As you
can see, X has three possible moves from
which to choose, labeled � , � , and � .)

a. Fill in all empty circles with the
values assigned them according to
the minimax evaluation algorithm.

b. Which move will X choose?

−1 −5

9

5 6

3

BA C

2 4

Question 7.2–1: (Solution, p S26) Describe the Turing Test and why Turing proposed it (i.e., its purpose).

Question 7.3–1: (Solution, p S26) Suppose we have a perceptron with three inputs, and the perceptron’s
current weights are � ��	 � � ��	�� � �

��	 ��� .
a. What would the perceptron predict given the input � ��� �

���
�

� � ?
b. Suppose this prediction were wrong. How would the perceptron update its weights if the learning rate

were � � ��	 �
?

S12 Questions

Question 7.3–2: (Solution, p S26) Suppose we have a three-input perceptron, where input � � is permanently
wired to a 1 input.

a. Suppose the weights of the perceptron were � ��	 ��� ��	 � � �

��	 � � , and we were to give it the inputs � ��������� � .
What would the perceptron output?

b. Suppose we wanted to select weights so that our perceptron would behave like the AND of the inputs
� � and �

�
.

� � � � �
� �

�
�

�
�

�
�

�
�

�

� �
�

�
� �

�

�
�

�
� � � �

Give a combination of perceptron weights � � , � � , and �
�

that would result in the desired behavior.

Question 8.1–1: (Solution, p S27) Consider the following context-free grammar.

S � �
�
a S b S

�
b S a S

Give a derivation of the string aabbab using this grammar.

Question 8.1–2: (Solution, p S27) Consider the following context-free grammar.

S � V V
�
V

V � (S)
�
x

�
y

�
z

Each of the following sentences is either described by this grammar or not. If it is, give either a parse tree
with S at its root or a derivation from S. If it is not, simply say so.

a. x (y) b. x y z c. x (y z)

Question 8.1–3: (Solution, p S27) Consider the following context-free grammar.

S � T + S
�
T

T � F T
�
F

F � x
�
y

�
(S)

Draw a parse tree for the sentence x (x + y).

Question 8.1–4: (Solution, p S27) Write a context-free grammar describing each of the following lan-
guages.

a. the set of strings of a’s and b’s beginning and ending with the letter a

b. the set of strings containing either only a’s or only b’s

c. the set of strings containing only a’s and b’s with at least one a and at least one b.

d. the set of strings of left-brackets and right-brackets where the brackets match (you can pair all brackets
so that each pair includes a left bracket and a right bracket occurring after it in the string). Examples
include [[]][] and [[[][]]].

Questions S13

Question 8.2–1: (Solution, p S28) For each of the following, say whether the regular expression describes
a language including the sentence. Your answer will be either “yes” or “no.”

ab* includes abab?
(a|b)a includes aba?
a(a|b)*b includes abbbaaab?
(a|b)(ba|ab)* includes ababab?
(a|b)(ba|ab)* includes abababa?

Question 8.2–2: (Solution, p S28) Write a regular expression describing each of the following languages.

a. strings containing only a’s and b’s where all a’s come before all b’s.

b. strings containing only a’s and b’s in which “aab” somewhere occurs as an adjacent sequence (like
aabaa or baaba but not abbab).

c. strings containing an even number of a’s (and no other letters).

d. strings that contain either only a’s or only b’s.

e. binary representations of positive even integers.

f. binary representations of positive integers that are at least 4.

Question 8.2–3: (Solution, p S28) Give an English description of a language that can be described by a
context-free grammar but not by a regular expression.

Question 9.1–1: (Solution, p S28) Consider the following finite automaton.

a

a

a

a

b
bb

b

Check the strings that are within the language accepted by this finite automaton.

ab aabbb
bbb bbbabb
baaa aabaabaa
abba

Question 9.1–2: (Solution, p S28) Consider the following finite automaton.

b b
a

a

a. Check the strings that the automaton will accept.

b bab
a bbbb
aba baba

b. Give an English description of the set of strings accepted by this automaton.

S14 Questions

Question 9.1–3: (Solution, p S28) Draw a finite automaton that accepts the strings of a’s and b’s beginning
with an a.

Question 9.1–4: (Solution, p S28) Design a finite state automaton that will recognize the language of
strings of a’s and b’s containing at least 3 b’s. Examples include bbbbb and bbab, but not bba.

Question 9.1–5: (Solution, p S29) Design a finite automaton that accepts the language of all strings that
contain abaa (such as ababaaba or aabaaaaa). You need not worry about strings containing letters other
than a’s and b’s.

Question 9.2–1: (Solution, p S29)
Consider the following Turing machine. (Note that the underscore represents a
blank on the tape.)

a,b
>

b
a,<

a
b,>

_
<

0 1 2

At right, diagram this Turing machine’s computation as it goes through the string
ababb. If you run out of blanks in the table, stop.

To represent the machine’s initial position in the table at right, we write “

�

ababb
”. This represents a tape containing “ ababb ” (with blanks extending infinitely
both ways), where the Turing machine is currently in state 0 of its finite automaton,
and its head is pointing to the initial a.

�

ababb

Questions S15

Question 9.2–2: (Solution, p S29)
Consider the following Turing machine. (Note that the underscore represents a
blank on the tape.)

0

2 3

1

4

a,b,_

a,b,_a,b

<

_
< a

><
b

a,>

b,>

At right, diagram this Turing machine’s computation as it goes through the string
ab. If you run out of blanks in the table, stop.

To represent the machine’s initial position in the table at right, we write “

�

ab ”.
This represents a tape containing “ ab ” (with blanks extending infinitely both
ways), where the Turing machine is currently in state 0 of its finite automaton, and
its head is pointing to the initial a.

�

ab

Question 9.2–3: (Solution, p S30) Design a Turing machine that transforms a string containing only a’s,
b’s, and c’s by replacing each letter preceding an a to a b. (Do not worry about the case when the string
begins with an a.) Thus, bccb would remain unchanged while caccaa would change to bacbba. The Turing
machine should always eventually enter an accepting state to terminate.

Question 9.2–4: (Solution, p S30) Restate the Church-Turing thesis in your own words.

Question 9.3–1: (Solution, p S30) Define the halting problem language (the language that we have seen
Turing machines cannot solve).

Question 9.3–2: (Solution, p S30) Consider the following choices.

A. the first is contained within the second

B. the second is contained within the first

C. neither is contained within the other

D. the languages are identical

Choose which of these choices best describes each of the following pairs of language classes.

a. languages described by regular expressions; languages accepted by finite automata

b. languages described by context-free grammars; languages described by regular expressions

c. languages described by context-free grammars; languages accepted by Turing machines

d. languages accepted by finite automata; languages accepted by Turing machines

S16 Solutions

Solution 2.1–1: (Question, p S1)
a. �

�
output

0 0 1
0 1 1
1 0 0
1 1 1

b. �
�

output
0 0 1
0 1 1
1 0 1
1 1 0

c. �
� �

output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Solution 2.1–2: (Question, p S1)

a. 2 (all paths from � or
�

to the output go through two gates)

b. 3 (the longest path goes from
�

through a NOT gate, an AND gate, and an OR gate)

c. 4 (the longest path goes from
�

through a NOT gate, an AND gate, an OR gate, and an AND gate)

Solution 2.2–1: (Question, p S1)

a. �
���
�

b. � � ����� �
c. � � ����� ��� � ����� � � ���

Solution 2.2–2: (Question, p S1)
a.

x

y

b. x

y

Solution 2.2–3: (Question, p S1)
a. �

�
output

0 0 1
0 1 0
1 0 1
1 1 1

b. �
� �

output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Solutions S17

Solution 2.2–4: (Question, p S1)
a. This involves an application of the DeMor-
gan’s law �

� � �
���

.

x

y

b. This involves an application of the distribu-
tive law �

� �
�
� � � � � ����� .

z

y

x

Solution 2.2–5: (Question, p S2) a. �
� �
�
�

b. �
� �
�
� �
�
�

c. �
� � �

�
� � �

�
� �

Solution 2.3–1: (Question, p S2) a. �
���

b. cannot be simplified using the technique from Section 2.3.
c.
� � �

�

Solution 2.3–2: (Question, p S2) �
� � � � �

�
� �

is good. (One could go further, though, and write
� � � � � � � � � � or even �

� � �
�
� �

.)

Solution 3.1–1: (Question, p S2) You need 3 bits for seven values, 4 for nine or twelve, and 5 for thirty
values.

Solution 3.1–2: (Question, p S2) There are 8,096 bits in a kilobyte:

8 bits
byte

� 1,024 bytes
KB

� 8,096 bits
KB

Solution 3.1–3: (Question, p S2) a. 101101 � ��� � 45 ���	���

b. 1010101 � ��� � 85 ���	���

c. 23 � �	��� � 10111 � ���

d. 95 � �	��� � 1011111 � ���

Solution 3.1–4: (Question, p S2) a. 1 010 101 � ��� � 125 �
��

b. 101 0101 � ��� � 55 � �	���

c. 10 1101 � ��� � 2D � �	���

d. 560 �
�� � 101 110 000 � ���

e. CAB � �	��� � 1100 1010 1011 � ���

f. 1B2 � �	��� � 1 1011 0010 � ���

Solution 3.2–1: (Question, p S3) a. � 1 � �	��� 100 0001
b. � 20 � �	��� 101 0100
c. 20 � �	��� 001 0100
d. � 300 � �	��� 1001 0010 1100

Solution 3.2–2: (Question, p S3) a. � 1 � �	��� 111 1111
b. � 20 � �	��� 110 1100
c. 20 � �	��� 001 0100
d. � 300 � �	��� 1110 1101 0100

S18 Solutions

Solution 3.2–3: (Question, p S3) a. Sign-magnitude: 111 1111 represents � 63 ���	���

b. Two’s-complement: 100 0000 represents � 64 ���	���

Solution 3.3–1: (Question, p S3) a. 0 0111 000 (1.0 � ��� � 1.0 ����� � � �
)

b. 0 0101 000 (0.01 � ��� � 1.0 � ��� � � � �
)

c. 0 1010 010 (1010 ����� � 1.010 ����� � � �
)

d. 1 1000 010 (� 10.1 � ��� �
� 1.01 � ��� � � �

)
e. 0 0011 000 (0.0001 � ��� � 1.0 � ��� � � � �

)

Solution 3.3–2: (Question, p S3) a. 0.8125 ���	��� or
� �
�	� (1.101 ����� � � � � � � 0.1101 � ���)

b. � 18 ���	��� (� 1.001 ����� � � � � �
�

�
� 10010 �����)

c. � 1.75 � �	��� (� 1.110 ����� � � � � � �
� 1.110 � ���)

d. � 13 ���	��� (� 1.101 ����� � � �	� �
�

�
� 1101 �����)

Solution 3.3–3: (Question, p S3) a. 0 101 01 (101 � ��� � 1.01 � ��� � � �
)

1 100 00 (� 10 � ��� �
� 1.0 � ��� � � �

)
b. 0.375 ���	��� or

�

 (1.10 ����� � � � �

�
� 0.0110 � ���)

� 10 � �	��� (� 1.01 ����� � � � � � �
� 1010 �����)

Solution 3.3–4: (Question, p S4) a. 0 01111 000 (1.0 � ��� � ��	 � � � �
)

1 10001 100 (� 110 � ��� �
� 1.10 � ��� � � �

)
b. 2.5 ���	��� (1.010 ����� � � �

� 10.1 �����)
� 28 � �	��� (� 1.110 ����� � � � �

� 11100 �����)

Solution 3.4–1: (Question, p S4) The disk can store 10 pictures:

� � � sq. inches
picture

� � � � � � � � pixels
sq. inch

� � bytes
pixel

� MB� � �
bytes

� � � 	���� MB
picture

���
MB

disk
� picture
� 	���� MB

� �
� ��	 �

pictures
disk

We round down to 10, since it doesn’t make sense to store a fraction of a picture.

Solution 3.4–2: (Question, p S4) A checkboard pattern, where every other pixel is black, would give the
maximum expansion factor. For such a system, each run would be only one pixel long, and the compression
system would use four bits to encode each run, for an expansion factor of four.

Solution 4.1–1: (Question, p S4) �
� ��	��

0 0 0
0 1 1
1 0 1
1 1 0

�
�
 �����
�

0 0 0
0 1 0
1 0 0
1 1 1

Solution 4.1–2: (Question, p S4) � � � �
�

0 1 1 1 1
1 0 1 1 1
1 1 0 0 1
1 1 1 0 0

Solution 4.1–3: (Question, p S4) Whereas a half adder takes only two input bits to add, a full adder adds
three input bits.

Solutions S19

Solution 4.1–4: (Question, p S4) ����� � � � �����
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Solution 4.1–5: (Question, p S4)
half

adder half
adder

half
adder

in
c sum

b

a
out

c

Solution 4.1–6: (Question, p S4) The design of this circuit is similar in structure to the design of a full
adder using half adders.

4−
bi

t a
dd

er
4−

bi
t a

dd
er

b

a4−7

4−7

4−
bi

t a
dd

er

b

a0−3

0−3

out0−3

 0

out4−7

Solution 4.2–1: (Question, p S5) �
�

old � new �
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 (ignore)
1 0 1 (ignore)
1 1 0 1
1 1 1 1

Solution 4.2–2: (Question, p S5) In a D flip-flop, the memory value changes only at that instant that the

 ���
 � input becomes 1. In a latch, however, the memory value continues adopting any values given as
long as its ���
	 input is 1. (In a D flip-flop, if the � input changes while
 ���
�� remains 1, the remembered
value doesn’t change. In a latch, however, a change to the � input results in an immediate change to the
remembered value.)

S20 Solutions

Solution 4.2–3: (Question, p S5) � � � � �

0 1 0
1 0 0
0 0 0
1 0 1
0 0 1
1 1 0
0 1 0
1 0 0

Solution 4.2–4: (Question, p S5)
�� � � � �

0 0 0
1 1 1
0 1 1
1 1 0
0 1 0
1 0 1
0 0 1
1 0 0
0 0 0
1 1 1

Solution 4.3–1: (Question, p S6)

 D Q

Q
Q

T

Solution 4.3–2: (Question, p S6)

Q
1 Q

 D Q

Q
0 Q

 D Q

Q
1

Q
0

ck

Solution 5.1–1: (Question, p S6) The fetch-execute cycle is the process by which a classical computer
executes instructions. In the fetch phase, the computer determines the next instruction to be completed by
fetching the instruction from memory. In the execute phase, the computer executes this instruction. The
computer alternates between these two phases as long as it is on.

Solution 5.1–2: (Question, p S6) It looks into the PC for a memory address, requests the information at
that address from RAM via the bus, and stores RAM’s response in the IR.

Solution 5.1–3: (Question, p S6)

a. 000 00000

b. 110 10100

c. 100 10010

d. 001 00011

Solutions S21

Solution 5.1–4: (Question, p S6)

a. PC 00 01 02 03 04
IR 00 84 C5 E4 A7 05
AC 00 05 0B 06

b. Memory location 00101 ����� changes to hold 06 ���	��� .

Solution 5.2–1: (Question, p S7)

? 25
25
? 50
75
? 75
-106

(This last output is somewhat tricky: In the last ADD instruction, the CPU computes ��� � ��� � � � � , but
this exceeds the maximum eight-bit two’s-complement number. So the computer wraps around ends up at� � � �

� � � �
�

� � �
.)

Solution 5.2–2: (Question, p S7) It would read from the user four times before halting (with the AC
progressing from � � to

� �
to � �

to �

� ���
).

Solution 5.2–3: (Question, p S7) addr data (translation)
00000 100 11110 LOAD 11110
00001 101 00111 STOR 00111
00010 100 00110 LOAD 00110
00011 111 00111 SUB 00111
00100 101 11111 STOR 11111
00101 000 00000 HALT
00110 000 00101 5

(Of course there are many other

solutions for all questions that involve writing programs.)

Solution 5.2–4: (Question, p S7) addr data (translation)
00000 100 00110 LOAD 00110
00001 101 11111 STOR 11111
00010 101 00111 STOR 00111
00011 110 00111 ADD 00111
00100 011 00001 JPOS 00001
00101 000 00000 HALT
00110 000 00001 1

Solution 5.2–5: (Question, p S8) a. address 00000: 8A 8B 8C
address 01010: 03 06 0A

b. AC: 01 03 01 8A 03 06 01 8B 04 0A 01 8C 00

Solution 5.3–1: (Question, p S8) addr data (translation)
00000 100 11110 LOAD 11110
00001 101 11111 STORE 11111
00010 110 00101 ADD 00101
00011 011 00001 JPOS 00001
00100 000 00000 HALT
00101 000 00001 1

S22 Solutions

Solution 5.3–2: (Question, p S8) addr data (translation)
00000 100 01010 LOAD 11110
00001 010 01000 JZER 00100
00010 101 01011 STORE 00111
00011 001 01011 JUMP 00000
00100 100 00000 LOAD 00111
00101 101 01010 STORE 11111
00110 000 00000 HALT
00111 000 00000 0

Solution 5.3–3: (Question, p S8)

READ
STORE n
ADD n
ADD n
ADD n
ADD v3
WRITE
HALT

n: 0
v3: 3

Solution 5.3–4: (Question, p S8)

top: READ
SUB v5
JZER done
JUMP top

done: HALT
v5: 5

Solution 5.3–5: (Question, p S9)

top: LOAD v0
WRITE
LOAD i
SUB one
STORE i
JPOS top
HALT

v0: 0
i: 100

Solution 5.3–6: (Question, p S9)

READ
JPOS ok
STORE n
SUB n
SUB n

ok: WRITE
HALT

n: 0

Solutions S23

Solution 5.3–7: (Question, p S9)

READ
STORE n

up: LOAD i # display i
WRITE
ADD i # double i
STORE i
LOAD n # repeat if n - i > 0
SUB i
JPOS up
HALT

n: 0
i: 1

Solution 5.4–1: (Question, p S9)
a.

READ # Read n
STORE n

while: LOAD n # while n /= 0, do:
JZER done
LOAD v1 # Write 1.
WRITE
READ # Read n.
STORE n
JUMP while # end while
HALT # Stop.

v1: 1
n: 0

b.
LOAD zero # Initialize sum to 0
STORE sum
READ # Read n
STORE n

up: LOAD n # while n /= 0, do:
JZER done
LOAD sum # Increase sum by n.
ADD n
STORE sum
READ # Read n
STORE n
JUMP up # end while

done: LOAD sum # Write sum.
WRITE
HALT # Stop.

zero: 0
sum: 0
n: 0

Solution 5.4–2: (Question, p S9)

Read � .
if ���

�
, then:

Write � .
else:

Write � � .
end if
Stop.

Solution 5.4–3: (Question, p S9)

Initialize � ��� to �

� ���
.

repeat
� � �

times:
Read � .
if ��� � ��� , then:

Change � ��� to be � .
end if

end repeat
Write � ��� .
Stop.

S24 Solutions

Solution 6.2–1: (Question, p S9)

� The operating system abstracts computer resources.

� The operating system provides hardware compatibility.

� The operating system protects the overall computer system.

Solution 6.2–2: (Question, p S9) Computer resources tend to have complex interfaces, which are difficult to
use. The operating system creates a simpler interface, and programs running in the system use this interface
instead. When a program uses this simpler interface, the operating system translates the request to the proper
commands for the hardware.
For example, a computer display knows nothing about windows, but it is a convenient concept for programs
to use. A program might tell the operating system to create a window, and the operating system would tell
the display to draw each individual pixel within that window’s rectangle white.

Solution 6.3–1: (Question, p S9) Suppose the process currently using the CPU is process � .

1. The operating system stores the contents of all registers, including the program counter (which holds
the address of the next instruction � wishes to execute), into memory the OS has dedicated to remem-
bering � ’s registers.

2. The operating system selects which process to run next. Suppose this is process � .

3. The operating system restores the contents of all registers from memory the OS dedicated to remem-
bering � ’s registers.

4. The operating system jumps to the current instruction within � .

Solution 6.3–2: (Question, p S10)

time CPU ready disk
0 AB
1 A B
2 B A
3 B A
4 A B
5 A B
6 A B
7 BA
8 B A
9 A

10 A
11

Solutions S25

Solution 6.3–3: (Question, p S10)

index contents
0 7
1 —
2 3
3 6
4 2
5 1
6 —
7 4
8 —
9 —

10 5
11 —

Solution 6.3–4: (Question, p S10) The CPU first looks at entry 9 of the page table in RAM, to determine
the page’s location. If the entry were blank (indicating that the page isn’t in RAM), the CPU would force
the operating system to load page 9 into RAM. In this case, though, it would find “3” in the entry, and so the
CPU would go to page frame 3 in RAM to find the requested data.

Solution 7.1–1: (Question, p S10)

0,1

0,0

0,0

0,2

0,1

0,0

1,0

0,0

1,1 1,0

0,0

0,1

0,0 0,1

0,0

1,0

0,0

1,1

1,0

0,0

0,0

2,00,1

0,0

0,0

0,2

1,0

0,0

0,0

2,01,2 2,1

2,2

Solution 7.1–2: (Question, p S11)

100

100

00

−1000 0 100

0

100

−100

S26 Solutions

Solution 7.1–3: (Question, p S11)

a.

−1 −5

9

5 6

32 4 6 −1

−132

3
BA C

b. �

Solution 7.2–1: (Question, p S11) Turing proposed that a person and a computer hide behind a screen
connected via a communication link to a human tester. The tester poses questions to each and tries to
distinguish which is the human. If the tester can’t reliably determine which is the human, the computer has
“passed” the test.

A
C

B

The purpose of Turing’s test is to be a specific, meaningful goal toward which artificial intelligence re-
searchers can strive.

Solution 7.3–1: (Question, p S11)

a. It would predict 1. (The weighted sum is
��	��

, which exceeds
�
.)

b. � ��	 ��� ��	 � � �

��	 � �

Solution 7.3–2: (Question, p S12)

a. 1 (The weighted sum is 0.2, which exceeds 0.)

b. � �

��	 � ������� � (There are many other correct answers.)

Solutions S27

Solution 8.1–1: (Question, p S12)

S � aSbS
� aaSbSbS
� aabSbS
� aabbS
� aabbaSbS
� aabbabS
� aabbab

[Note that it is important in a derivation to replace exactly one symbol in each step. Do not combine steps.]

Solution 8.1–2: (Question, p S12)
a.

S

V V

Sx ()

y

V

b. x y z is not described by the
grammar

c.
S

V V

Sx ()

V V

y z

Solution 8.1–3: (Question, p S12)

T

F T

F

S

T S

TF

F

x

x

y

S

)(

+

Solution 8.1–4: (Question, p S12) a. S � a T a
T � a T

�
b T

�
�

b. S � A
�
B

A � a A
�

�
B � b B

�
�

c. S � T a T b T
�
T b T a T

T � a T
�
b T

�
�

d. S � S S
�
[S]

�
�

S28 Solutions

Solution 8.2–1: (Question, p S13)

ab* includes abab? no
(a|b)a includes aba? no
a(a|b)*b includes abbbaaab? yes
(a|b)(ba|ab)* includes ababab? no
(a|b)(ba|ab)* includes abababa? yes

Solution 8.2–2: (Question, p S13)

a. a*b*

b. (a|b)*aab(a|b)*

c. (aa)*

d. a*|b*

e. 1(0|1)*0

f. 1(0|1)(0|1)(0|1)* [Binary numbers that are at least 4 must have at least three bits. This regular
expression describes all combinations of 0’s and 1’s that begin with a 1, have two more bits, and can
have any number of bits thereafter.]

Solution 8.2–3: (Question, p S13) The language of strings of a’s and b’s containing the same number of
each is context-free, but it is not regular.

Solution 9.1–1: (Question, p S13)
�

ab aabbb
bbb

�
bbbabb

baaa
�

aabaabaa
�

abba

Solution 9.1–2: (Question, p S13)

a.
�

b
�

bab
a

�
bbbb

aba baba

b. It accepts strings of a’s and b’s ending in a b.

Solution 9.1–3: (Question, p S14)

a
a,b

a,b

b

Solution 9.1–4: (Question, p S14)

bbb

a a a a,b

Solutions S29

Solution 9.1–5: (Question, p S14)

a b a a
b

a,ba b
b

Solution 9.2–1: (Question, p S14) �

ababb

a

�

babb

ab

�

abb

aba

�

bb

abab

�

b

ababb

�

abab

�

b

aba

�

ba

ab

�

aaa

abb

�

aa
(At this point, the machine has nowhere to go, and so it stops.)

Solution 9.2–2: (Question, p S15)
�

ab
�

ab

b

�

ab

ba

�

b

b

�

ab

ba

�

b

bab

�

ba

�

b

(At this point, the machine has nowhere to go, and so it stops.)

S30 Solutions

Solution 9.2–3: (Question, p S15)

_
>

a
<

>
b,c

a,b,c
b,>
a
>

Solution 9.2–4: (Question, p S15) The Turing machine model is computationally as powerful as any other
computational model.

Solution 9.3–1: (Question, p S15) The halting problem is the set of strings of the form ��� � where � is
the string representation of a Turing machine, and this Turing machine does not accept the string � as part
of the language it recognizes.

Solution 9.3–2: (Question, p S15)

a. D. the languages are identical

b. B. the second is contained within the first

c. A. the first is contained within the second

d. A. the first is contained within the second

