
The science of computing
first edition

by Carl Burch

Copyright c
�

2004, by Carl Burch. This publication may be redistributed, in part or in whole, provided that
this page is included. A complete version, and additional resources, are available on the Web at

http://www.cburch.com/socs/

Contents

1 Introduction 1
1.1 Common misconceptions about computer science . 1
1.2 Textbook goals . 2

2 Logic circuits 3
2.1 Understanding circuits . 3

2.1.1 Logic circuits . 3
2.1.2 Practical considerations . 5

2.2 Designing circuits . 5
2.2.1 Boolean algebra . 6
2.2.2 Algebraic laws . 7
2.2.3 Converting a truth table . 8

2.3 Simplifying circuits . 9

3 Data representation 13
3.1 Binary representation . 13

3.1.1 Combining bits . 13
3.1.2 Representing numbers . 14
3.1.3 Alternative conversion algorithms . 16
3.1.4 Other bases . 17

3.2 Integer representation . 18
3.2.1 Unsigned representation . 18
3.2.2 Sign-magnitude representation . 18
3.2.3 Two’s-complement representation . 19

3.3 General numbers . 21
3.3.1 Fixed-point representation . 22
3.3.2 Floating-point representation . 22

3.4 Representing multimedia . 27
3.4.1 Images: The PNM format . 27
3.4.2 Run-length encoding . 28
3.4.3 General compression concepts . 29
3.4.4 Video . 30
3.4.5 Sound . 30

4 Computational circuits 33
4.1 Integer addition . 33
4.2 Circuits with memory . 35

ii CONTENTS

4.2.1 Latches . 35
4.2.2 Flip-flops . 38
4.2.3 Putting it together: A counter . 39

4.3 Sequential circuit design (optional) . 40
4.3.1 An example . 40
4.3.2 Another example . 42

5 Computer architecture 45
5.1 Machine design . 45

5.1.1 Overview . 45
5.1.2 Instruction set . 46
5.1.3 The fetch-execute cycle . 48
5.1.4 A simple program . 48

5.2 Machine language features . 49
5.2.1 Input and output . 49
5.2.2 Loops . 50

5.3 Assembly language . 51
5.3.1 Instruction mnemonics . 51
5.3.2 Labels . 52
5.3.3 Pseudo-operations . 52

5.4 Designing assembly programs . 53
5.4.1 Pseudocode definition . 53
5.4.2 Pseudocode examples . 55
5.4.3 Systematic pseudocode . 56

5.5 Features of real computers (optional) . 57
5.5.1 Size . 57
5.5.2 Accessing memory . 58
5.5.3 Computed jumps . 58

6 The operating system 61
6.1 Disk technology . 61
6.2 Operating system definition . 62

6.2.1 Virtual machines . 62
6.2.2 Benefits . 63

6.3 Processes . 64
6.3.1 Context switching . 64
6.3.2 CPU allocation . 66
6.3.3 Memory allocation . 68

7 Artificial intelligence 71
7.1 Playing games . 71

7.1.1 Game tree search . 72
7.1.2 Heuristics . 73
7.1.3 Alpha-beta search . 74
7.1.4 Summary . 74

7.2 Nature of intelligence . 74
7.2.1 Turing test . 74
7.2.2 Searle’s Chinese Room experiment . 75

CONTENTS iii

7.2.3 Symbolic versus connectionist AI . 76
7.3 Neural networks . 77

7.3.1 Perceptrons . 77
7.3.2 Networks . 78
7.3.3 Computational power . 79
7.3.4 Case study: TD-Gammon . 79

8 Language and computation 81
8.1 Defining language . 81
8.2 Context-free languages . 82

8.2.1 Grammars . 82
8.2.2 Context-free languages . 83
8.2.3 Practical languages . 84

8.3 Regular languages . 86
8.3.1 Regular expressions . 86
8.3.2 Regular languages . 88
8.3.3 Relationship to context-free languages . 88

9 Computational models 91
9.1 Finite automata . 91

9.1.1 Relationship to languages . 93
9.1.2 Limitations . 93
9.1.3 Applications . 94

9.2 Turing machines . 95
9.2.1 Definition . 95
9.2.2 An example . 96
9.2.3 Another example . 98
9.2.4 Church-Turing thesis . 100

9.3 Extent of computability . 101
9.3.1 Halting problem . 102
9.3.2 Turing machine impossibility . 103

10 Conclusion 107

Index 109

iv CONTENTS

Chapter 1

Introduction

Computer science is the study of algorithms for transforming information. In this course, we explore a
variety of approaches to one of the most fundamental questions of computer science:

What can computers do?

That is, by the course’s end, you should have a greater understanding of what computers can and cannot do.
We frequently use the term computational power to refer to the range of computation a device can

accomplish. Don’t let the word power here mislead you: We’re not interested in large, expensive, fast
equipment. We want to understand the extent of what computers can accomplish, whatever their efficiency.
Along the same vein, we would say that a pogo stick is more powerful than a truck: Although a pogo stick
may be slow and cheap, one can use it to reach areas that a large truck cannot reach, such as the end of a
narrow trail. Since a pogo stick can go more places, we would say that it is more powerful than a truck.
When applied to computers, we would say that a simple computer can do everything that a supercomputer
can, and so it is just as powerful.

1.1 Common misconceptions about computer science

Most students arrive to college without a good understanding of computer science. Often, these students
choose to study computer science based on their misconceptions of the subject. In the worst cases, students
continue for several semesters before they realize that they have no interest in computer science. Before we
continue, let me point out some of the most common misconceptions.

Computer science is not primarily about applying computer technology to business needs. Many
colleges have such a major called “Management Information Systems,” closely related to a Management or
Business major. Computer science, on the other hand, tends to take a scientist’s view: We are interested in
studying computation in itself. When we do study business applications of computers, the concentration is
on the techniques underlying the software. Learning how to use the software effectively in practice receives
much less emphasis.

Computer science is not primarily about building faster, better computers. Many colleges have such
a major called “Computer Engineering,” closely related to an Electrical Engineering major. Although com-
puter science entails some study of computer hardware, it focuses more on computer software design, theo-
retical limits of computation, and human and social factors of computers.

2 Chapter 1. Introduction

Computer science is not primarily about writing computer programs. Computer science students
learn how to write computer programs early in the curriculum, but the emphasis is not present in the “real”
computer science courses later in the curriculum. These more advanced courses often depend on the un-
derstanding built up by learning how to program, but they rarely strive primarily to build programming
expertise.

Computer science does not prepare students for jobs. That is, a good computer science curriculum isn’t
designed with any particular career in mind. Often, however, businesses look for graduates who have studied
computer science extensively in college, because students of the discipline often develop skills and ways of
thinking that work well for these jobs. Usually, these businesses want people who can work with others to
understand how to use computer technology more effectively. Although this often involves programming
computers, it also often does not.

Thinking about your future career is important, but people often concentrate too much on the quantifiable
characteristics of hiring probabilities and salary. More important, however, is whether the career resonates
with your interests: If you can’t see yourself taking a job where a major in � is important, then majoring in
� isn’t going to prove very useful to your career, and it may even be a detriment. Of course, many students
choose to major in computer science because of their curiosity, without regard to future careers.

1.2 Textbook goals

This textbook fulfills two major goals.

� It satisfies the curiosity of students interested in an overview of practical and theoretical approaches
to the study of computation.

� Students who believe they may want to study computer science more intensively can get an overview
of the subject to help with their discernment. In addition to students interested in majoring or minoring
in computer science, these students include those who major in something else (frequently the natural
sciences or mathematics) and simply want to understand computer science well also.

The course on which this textbook is based (CSCI 150 at the College of Saint Benedict and Saint John’s
University) has three major units, of roughly equal size.

� Students learn the fundamentals of how today’s electronic computers work (Chapters 2 through 6 of
this book). We follow a “bottom-up” approach, beginning with simple circuits and building up toward
writing programs for a computer in assembly language.

� Students learn the basics of computer programming, using the specific programming language of Java
(represented by the Java Supplement to this book).

� Students study different approaches to exploring the extent of computational power (Chapters 7 to 10
of this book).

Chapter 2

Logic circuits

We begin our exploration by considering the question of how a computer works. Answering this question
will take several chapters. At the most basic level, a computer is an electrical circuit. In this chapter, we’ll
examine a system that computer designers use for designing circuits, called a logic circuit.

2.1 Understanding circuits

2.1.1 Logic circuits

A logic circuit consists of lines, representing wires, and peculiar shapes called logic gates. There are three
types of logic gates:

NOT gate AND gate OR gate

The relationship of the symbols to their names can be difficult to remember. I find it handy to remember that
the word AND contains a D, and this is what an AND gate looks like. We’ll see how logic gates work in a
moment.

Each wire carries a single information element, called a bit. A bit’s value can be either 0 or 1. In
electrical terms, you can think of zero volts representing 0 and five volts representing 1. (In practice, there
are many systems for representing 0 and 1 with different voltage levels. For our purposes, the details of
voltage are not important.) The word bit, incidentally, comes from Binary digIT; the term binary comes
from the two (hence bi-) possible values.

Here is a diagram of one example logic circuit.

out
x

y

We’ll think of a bit travelling down a wire until it hits a gate. You can see that some wires intersect in a
small, solid circle: This circle indicates that the wires are connected, and so values coming into the circle

4 Chapter 2. Logic circuits

a o

a

b
o

a

b
o

� �

0 1
1 0

� � �

0 0 0
0 1 0
1 0 0
1 1 1

� � �

0 0 0
0 1 1
1 0 1
1 1 1

(a) NOT gate (b) AND gate (c) OR gate

Figure 2.1: Logic gate behavior.

continue down all the wires connected to the circle. If two wires intersect with no circle, this means that one
wire goes over the other, like an Interstate overpass, and a value on one wire has no influence on the other.

Suppose that we take our example circuit and send a 0 bit on the upper input (�) and a 1 bit on the lower
input (�). Then these inputs would travel down the wires until they hit a gate.

0

1

x

y

out
1 1

0 0

To understand what happens when a value reaches a gate, we need to define how the three gate types work.

NOT gate: Takes a single bit and produces the opposite bit (Figure 2.1(a)). In our example circuit, since
the upper NOT gate takes 0 as an input, it will produce 1 as an output.

AND gate: Takes two inputs and outputs 1 only if both the first input and the second input are 1 (Fig-
ure 2.1(b)). In our example circuit, since both inputs to the upper AND gate are 1, the AND gate will
output a 1.

OR gate: Takes two inputs and outputs 1 if either the first input or the second input are 1 (or if both are 1)
(Figure 2.1(c)).

After the values filter through the gates based on the behaviors of Figure 2.1, the values in the circuit
will be as follows.

0

1

1

0
1

x

y

out
1 1

1
1

0 0

0
0

2.2 Designing circuits 5

Based on this diagram, we can see that when � is 0 and � is 1, the output ���
�

is 1.
By doing the same sort of propagation for other combinations of input values, we can build up a table of

how this circuit works for different combinations of inputs. We would end up with the following results.

� � ���
�

0 0 0
0 1 1
1 0 1
1 1 0

Such a table, representing what a circuit computes for each combination of possible inputs, is a truth table.
The second row, which says that ���

�
is 1 if � is 0 and � is 1, corresponds to the propagation illustrated

above.

2.1.2 Practical considerations

Logic gates are physical devices, built using transistors. At the heart of the computer is the central process-
ing unit (CPU), which includes millions of transistors.

The designers of the CPU worry about two factors in their circuits: space and speed. The space factor
relates to the fact that each transistor takes up space, and the chip containing the transistors is limited in
size, so the number of transistors that fit onto a chip is limited by current technology. Since CPU designers
want to fit many features onto the chip, they try to build their circuits with as few transistors as possible to
accomplish the tasks needed. To reduce the number of transistors, they try to create circuits with few logic
gates.

The second factor, speed, relates to the fact that transistors take time to operate. Since the designers want
the CPU to work as quickly as possible, they work to minimize the circuit depth, which is the maximum
distance from any input through the circuit to an output. Consider, for example, the two dotted lines in the
following circuit, which indicate two different paths from an input to an output in the circuit.

x

y

The dotted path starting at � goes through three gates (an OR gate, then a NOT gate, then another OR gate),
while the dotted path starting at � goes through only two gates (an AND gate and an OR gate). There are
two other paths, too, but none of the paths go through more than three gates. Thus, we would say that this
circuit’s depth is 3, and this is a rough measure of the circuit’s efficiency: Computing an output with this
circuit takes about three times the amount of time it takes a single gate to do its work.

2.2 Designing circuits

In the previous section, we saw how logic circuits work. This is helpful when you want to understand the
behavior of a circuit diagram. But computer designers face the opposite problem: Given a desired behavior,
how can we build a circuit with that behavior? In this section, we look at a systematic technique for designing
circuits. First, though, we’ll take a necessary detour through the study of Boolean expressions.

6 Chapter 2. Logic circuits

2.2.1 Boolean algebra

Boolean algebra, a system of logic designed by George Boole in the middle of the nineteenth century, forms
the foundation for modern computers. George Boole noticed that logical functions could be built from AND,
OR, and NOT gates and that this observation leads one to be able to reason about logic in a mathematical
system.

As Boole was working in the nineteenth century, of course, he wasn’t thinking about logic circuits.
He was examining the field of logic, created for thinking about the validity of philosophical arguments.
Philosophers have thought about this subject since the time of Aristotle. Logicians formalized some common
mistakes, such as the temptation to conclude that if � implies � , and if � holds, then � must hold also.
(“Brilliant people wear glasses, and I wear glasses, so I must be brilliant.”)

As a mathematician, Boole sought a way to encode sentences like this into algebraic expressions, and
he invented what we now call Boolean expressions. An example of a Boolean expression is “ � ��� � � .” A
line over a variable (or a larger expression) represents a NOT; for example, the expression � corresponds to
feeding � through a NOT gate. Multiplication (as with � �) represents AND. After all, Boole reasoned, the
AND truth table (Figure 2.1(b)) is identical to a multiplication table over 0 and 1. Addition (as with ��� �)
represents OR. The OR truth table (Figure 2.1(c)) doesn’t match an addition table over 0 and 1 exactly —
although 1 plus 1 is 2, the result of 1 OR 1 is 1 — but, Boole decided, it’s close enough to be a worthwhile
analogy.

In Boolean expressions, we observe the regular order of operations: Multiplication (AND) comes before
addition (OR). Thus, when we write � ��� � � , we mean � � ���	�
� � ��� . We can use parentheses when this order
of operations isn’t what we want. For NOT, the bar over the expression indicates the extent of the expression
to which it applies; thus, ��� � represents NOT � � OR ��� , while �
� � represents � NOT ��� OR � NOT ��� .

A warning: Students new to Boolean expressions frequently try to abbreviate � � as � � — that is, drawing
a single line over the whole expresion, rather than two separate lines over the two individual pieces. This
abbreviation is wrong. The first, � � , translates to � NOT ��� AND � NOT ��� (that is, both � and � are 0), while

� � translates to NOT � � AND ��� (that is, � and � aren’t both 1). We could draw a truth table comparing the
results for these two expressions.

� � � � � � � � � �
0 0 1 1 1 0 1
0 1 1 0 0 0 1
1 0 0 1 0 0 1
1 1 0 0 0 1 0

Since the fifth column (� �) and the seventh column (� �) aren’t identical, the two expressions aren’t equiva-
lent.

Every expression directly corresponds to a circuit and vice versa. To determine the expression cor-
responding to a logic circuit, we feed expressions through the circuit just as values propagate through it.
Suppose we do this for our circuit of Section 2.1.

yx

yx

yxyx

y

x
out
+

y

x

y

x

The upper AND gate’s inputs are � and � , and so it outputs � � . The lower AND gate outputs � � , and the
OR gate combines these two into � �
� � � .

2.2 Designing circuits 7

law AND OR
commutative � � � � � � � � � � � �
associative �
� � � � � � � ��� � � � � � � � � � � � � ����� �
identity ����� � � � ��� � �
distributive � � � � � � � � � � � � ! � � � � � � � � ��� � � � � �
one/zero ���	� � � ! � �
� � �
idempotency ! � � � � ! � � � � �
inverse ! � � � � ! � � � � �
DeMorgan’s law ! � � � � � � ! � � � � � �
double negation ! � � �

Figure 2.2: A sampler of important laws in Boolean algebra.

2.2.2 Algebraic laws

Boole’s system for writing down logical expressions is called an algebra because we can manipulate symbols
using laws similar to those of algebra. For example, the commutative law applies to both OR and AND. To
prove that OR is commutative (that is, that � � � � � � �), we can complete a truth table demonstrating
that for each possible combination of � and � , the values of � � � and � � � are identical.

� � � � � � � �
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

Since the third and fourth columns match, we would conclude that � � � � � � � is a universal law.
Since OR (and AND) are commutative, we can freely reorder terms without changing the meaning of

the expression. The commutative law of OR would allow us to transform � � � � � into � � � � � , and the
commutative law of AND (applied twice) allows us to transform � ��� � � to � � � � � .

Similarly, both OR and AND have an associative law (that is, � � � � � � � � � � � ��� � �). Because
of this associativity, we won’t bother writing parentheses across the same operator when we write Boolean
expressions. In drawing circuits, we’ll freely draw AND and OR gates that have several inputs. A 3-input
AND gate would actually correspond to two 2-input AND gates when the circuit is actually wired. There
are two possible ways to wire this.

 A + (B + C)
A

B

CA
B
C A

B

C
 (A + B) + C

Because of the associative law for AND, it doesn’t matter which we choose.
There are many such laws, summarized in Figure 2.2. This includes analogues to all of the important

algebraic laws dealing with multiplication and addition. There are also many laws that don’t hold with
addition and multiplication; these are marked with an exclamation point in the table.

8 Chapter 2. Logic circuits

2.2.3 Converting a truth table

Now we can return to our problem: If we have a particular logical function we want to compute, how can we
build a circuit to compute it? We’ll begin with a description of the logical function as a truth table. Suppose
we start with the following function for which we want a circuit.

� � � ���
�

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Given such a truth table defining a function, we’ll build up a Boolean expression representing the func-
tion. For each row of the table where the desired output is 1, we describe it as the AND of several factors.

� � � ���
�

description
0 0 1 1 � ���
0 1 0 1 � � �
1 1 0 1 � � �
1 1 1 1 � ���

To arrive at a row’s description, we choose for each variable either that variable or its negation, depending
on which of these is 1 in that row. Then we take the AND of these choices. For example, if we consider the
first of the rows above, we consider that since � is 0 in this row, � is 1; since � is 0, � is 1; and � is 1. Thus,
our description is the AND of these choices, � ��� . This expression gives 1 for the combination of values
on this row; but for other rows, its value is 0, since every other row is different in some variable, and that
variable’s contribution to the AND would yield 0.

Once we have the descriptions for all rows where the desired output is 1, we observe the following: The
value of the desired circuit should be 1 if the inputs correspond to the first 1-row, the second 1-row, the third
1-row, or the fourth 1-row. Thus, we’ll combine the expressions describing the rows with an OR.

� ��� � � � � � � � � � � ���

Note that we do not include rows where the desired output is 0 — for these rows, we want none of the AND
terms to yield 1, so that the OR of all terms gives 0.

The expression we get is called a sum of products expression. It is called this because it is the OR
(a sum, if we understand OR to be like addition) of several ANDs (products, since AND corresponds to
multiplication). We call this technique of building an expression from a truth table the sum of products
technique.

This expression leads immediately to the circuit of Figure 2.3. In general, this technique allows us take
any function over bits and build a circuit to compute that function. The existence of such a technique proves
that circuits can compute any logical function.

Note, incidentally, that the depth of this circuit will always be three (or less), since every path from input
to output will go through a NOT gate (maybe), an AND gate, and an OR gate. Thus, this technique shows
that it’s never necessary to design a circuit that is more than three gates deep. Sometimes, though, designers
build deeper circuits because they are concerned not only with speed, but also with size: A larger circuit can
often accomplish the same task using fewer gates.

2.3 Simplifying circuits 9

out

y

x

z

Figure 2.3: A circuit derived from a given truth table.

2.3 Simplifying circuits

The circuit generated by the sum-of-products technique can be quite large. This is impractical: Additional
gates cost money, so CPU designers want to use gates as economically as possible to make room for more
features or to reduce costs. Thus, we’d like to make a smaller circuit accomplishing the same thing, if
possible.

We can simplify a circuit by taking the corresponding expression and reducing it using laws of Boolean
algebra. We will insert this simplification step into our derivation process. Thus, our approach for converting
a truth table into a circuit will now have three steps.

1. Build a sum of products expression from the truth table.

2. Simplify the expression using laws of Boolean algebra (as in Figure 2.2).

3. Draw the circuit corresponding to this simplified expression.

In the rest of this section, we look at a particular technique for simplifying a Boolean expression. Our
technique for simplifying expressions works only for sum-of-products expressions — that is, the expression
must be an OR of terms, each term being an AND of variables or their negations.

Suppose we want to simplify the expression

� ��� � � � � � � � � � � �����

1. We look through the terms looking for all pairs that are identical in every way, except for one variable
that is NOTted in one and not NOTted in the other. Our example has two such pairs.

� � � and � � � differ only in � .
� � � and � ��� differ only in � .

If no such pairs are found, we are done.

10 Chapter 2. Logic circuits

2. We create a new expression. This expression includes a single term for each pair from step 1; this
term keeps everything that the pair shares in common. The expression also keeps any terms that do
not participate in any pairs from step 1. For our example, this would lead us to the following.

� � � � � � � � �

The � ��� term arises because this term does not belong to a pair from step 1; we include � � due to the
� � � � � � � pair, in which � and � are the common factors; and we include � � due to the � � � � � ���
pair. Note that we include a term for every pair, even if some pairs overlap (that is, if two pairs include
the same term).

The following reasoning underlies this transformation.

� Using the law that � � � � � , we can duplicate the � � � term, which appears in two of the
pairs.

� ��� � � � � � � � � � � � � � � ���

� Because of the associative and commutative laws of OR, we can rearrange and insert parentheses
so that the pairs are together.

� ��� �

We’ll concentrate on the first pair (� � � � � � �) in the following. (The reasoning for the other
pair, � � � � � ��� , proceeds similarly.)

� � � � � � � � has two terms with � � in common. Using the distributive law of AND over OR, we
get � ��� ��� � � .

� We can apply the law � � � � � to get � � � � .
� Finally, we apply AND’s identity law (� � � � �) to get � � .

3. If there are duplicates among the terms, we can remove the duplicates. This is justified by the Boolean
algebra law that � � � � � . (There are no duplicates in this case.)

4. Return to step 1 to see if there are any pairs in this new expression. (In our working example, there
are no more pairs to be found.)

Thus, we end up with the simplified expression

� ��� � � � � � � �

From this we can derive the smaller circuit of Figure 2.4 that works the same as that of Figure 2.3. In this
case we have replaced the 10 gates of Figure 2.3 with only 7 in Figure 2.4.

2.3 Simplifying circuits 11

x

z

out
y

Figure 2.4: A simplified circuit equivalent to Figure 2.3.

12 Chapter 2. Logic circuits

Chapter 3

Data representation

Since computer science is the study of algorithms for transforming information, an important element of
the discipline is understanding techniques for representing information. In this chapter, we’ll examine some
techniques for representing letters, integers, real numbers, and multimedia.

3.1 Binary representation

One of the first problems we need to confront is how wires can represent many values, if a wire can only
carry a 0 or 1 based on its electrical voltage.

3.1.1 Combining bits

A wire can carry one bit, which can represent up to two values. But suppose we have several values. For
example, suppose we want to remember the color of a traffic light (red, amber, or green). What can we do?

We can’t do this using a single wire, since a wire carries a single bit, which can represent only two values
(0 and 1). Thus, we will need to add more bits. Suppose we use two wires. Then we can assign colors to
different combinations of bits on the two wires.

wire 1 wire 2 meaning
0 0 red
0 1 amber
1 0 green

For example, if wire 1 carries 0 and wire 2 carries 1, then this would indicate that the light is amber. In fact,
with two bits we can represent up to four values: The fourth combination,

�
���	��� , was unnecessary for the

traffic light.
If we want to represent one of the traditional colors of the rainbow (red, orange, yellow, green, blue,

indigo, violet), then two bits would not be enough. But three bits would be: With three bits, there are four
distinct values where the first bit is 0 (since there are four different combinations for the other two bits)
and four distinct values where the first bit is 1, for a total of eight combinations, which is enough for the
rainbow’s seven colors.

In general, if we have � bits, we can represent ��� distinct values through various combinations of the
bits’ values. In fact, this fact is so important that, to emphasize it, we will look at a formal proof.

Theorem 1 We can represent �	� distinct values using different combinations of � bits.

14 Chapter 3. Data representation

Proof: For each bit, we have two choices, 0 or 1. We make the � choices independently, so we can
simply multiply the number of choices for each bit.

� times� ��� �
� � � � � � ��� � � � �

There are, therefore, � � different combinations of choices.

Computers often deal with English text, so it would be nice to have some way of assigning distinct
values to represent each possible printable character on the keyboard. (We consider lower-case and capital
letters as different characters.) How many bits do we need to represent the keyboard characters?

If you count the symbols on the keyboard, you’ll find that there are 94 printable characters. Six bits
don’t provide enough distinct values, since they provide only � � ���	� different combinations, but seven is
plenty (��
 � � �
�). Thus, we can represent each of the 94 possible printable characters using seven bits. Of
course, seven bits actually permit up to 128 different values; the extra 34 can be dedicated to the space key,
the enter key, the tab key, and other convenient characters.

Many computers today use ASCII (American Standard Code for Information Interchange) for reprent-
ing characters. This seven-bit coding defines the space as 0100000, the capital A as 1000001, the zero
digit as 0110000, and so on. Figure 3.1 contains a complete table of the ASCII codes. (Most of the extra
34 values, largely obscure abbrevations in the first column of Figure 3.1, are rarely used today.)

Computers deal with characters often enough that designers organize computer data around the size of
their representation. Computer designers prefer powers of two, however. (This preference derives from
the fact that � bits can represent up to �	� different values.) Thus, they don’t like dividing memory up into
units of seven bits (as required for the ASCII code). Instead, they break memory into groups of eight bits
(��� � �), each of which they call a byte. The extra bit is left unused when representing characters using
ASCII.

When they want to talk about large numbers of bytes, computer designers group them into kilobytes
(KB). The prefixes kilo- come from the metric prefix for a thousand (as in kilometer and kilogram) However,
because computers deal in binary, it’s more convenient to deal with powers of 2, and so the prefix kilo- in
kilobyte actually stands for the closest power of 2 to 1000, which is ����� � � � � � . These abbreviations extend
upward. �

kilobyte KB � ��� � 1,024 bytes
megabyte MB �
��� � 1,048,576 bytes
gigabyte GB �
� � � 1.074 billion bytes
terabyte TB ����� � 1.100 trillion bytes

3.1.2 Representing numbers

We can already represent integers from zero to one using a single bit. To represent larger numbers, we need
to use combinations of bits. The most convenient technique for assigning values to combinations is based
on binary notation (also called base 2).

You’re already familiar with decimal notation (also called base 10). You may remember the following
sort of diagram from grade school.

1
�������

0
�����

2
���

4
�

That is, in representing the number 1024, we put a 4 in the ones place, a 2 in the tens place, a 0 in the
hundreds places, and a 1 in the thousands place. This system is called base 10 because there are 10 possible

�
Sometimes, manufacturers use powers of 10 instead of 2 for marketing purposes. Thus, they may advertise a hard disk as

holding 40 GB, when it actually holds only 37.3 GB, or 40 billion bytes.

3.1 Binary representation 15

0 0000000 NUL 32 0100000 SP 64 1000000 @ 96 1100000 ‘
1 0000001 SOH 33 0100001 ! 65 1000001 A 97 1100001 a
2 0000010 STX 34 0100010 " 66 1000010 B 98 1100010 b
3 0000011 ETX 35 0100011 # 67 1000011 C 99 1100011 c
4 0000100 EOT 36 0100100 $ 68 1000100 D 100 1100100 d
5 0000101 ENQ 37 0100101 % 69 1000101 E 101 1100101 e
6 0000110 ACK 38 0100110 & 70 1000110 F 102 1100110 f
7 0000111 BEL 39 0100111 ’ 71 1000111 G 103 1100111 g
8 0001000 BS 40 0101000 (72 1001000 H 104 1101000 h
9 0001001 HT 41 0101001) 73 1001001 I 105 1101001 i

10 0001010 NL 42 0101010 * 74 1001010 J 106 1101010 j
11 0001011 VT 43 0101011 + 75 1001011 K 107 1101011 k
12 0001100 NP 44 0101100 , 76 1001100 L 108 1101100 l
13 0001101 CR 45 0101101 - 77 1001101 M 109 1101101 m
14 0001110 SO 46 0101110 . 78 1001110 N 110 1101110 n
15 1001111 SI 47 0101111 / 79 1001111 O 111 1101111 o
16 0010000 DLE 48 0110000 0 80 1010000 P 112 1110000 p
17 0010001 DC1 49 0110001 1 81 1010001 Q 113 1110001 q
18 0010010 DC2 50 0110010 2 82 1010010 R 114 1110010 r
19 0010011 DC3 51 0110011 3 83 1010011 S 115 1110011 s
20 0010100 DC4 52 0110100 4 84 1010100 T 116 1110100 t
21 0010101 NAK 53 0110101 5 85 1010101 U 117 1110101 u
22 0010110 SYN 54 0110110 6 86 1010110 V 118 1110110 v
23 0010111 ETB 55 0110111 7 87 1010111 W 119 1110111 w
24 0011000 CAN 56 0111000 8 88 1011000 X 120 1111000 x
25 0011001 EM 57 0111001 9 89 1011001 Y 121 1111001 y
26 0011010 SUB 58 0111010 : 90 1011010 Z 122 1111010 z
27 0011011 ESC 59 0111011 ; 91 1011011 [123 1111011 {
28 0011100 FS 60 0111100 < 92 1011100 \ 124 1111100 |
29 0011101 GS 61 0111101 = 93 1011101] 125 1111101 }
30 0011110 RS 62 0111110 > 94 1011110 ˆ 126 1111110 ˜
31 0011111 US 63 0111111 ? 95 1011111 _ 127 1111111 DEL

Figure 3.1: The ASCII character assignments.

16 Chapter 3. Data representation

digits for each place (0 through 9) and because the place values go up by factors of 10 (��� � ��� � � ���
� � � � � � �).

In binary notation, we have only two digits (0 and 1) and the place values go up by factors of 2. So we
have a ones place, a twos place, a fours place, an eights place, a sixteens place, and so on. The following
diagrams a number written in binary notation.

1� 0
�

1
�

1
�

This value, 1011 � ��� , represents a number with 1 eight, 0 fours, 1 two, and 1 one: � � � � � � � � � � � � � � � � 11 � ����� .
(The parenthesized subscripts indicate whether the number is in binary notation or decimal notation.)

We’ll often want to convert numbers between their binary and decimal representations. We saw how
to convert binary to decimal with 1011 � ��� . Here’s another example: Suppose we want to identify what
100100 � ��� represents. We first determine what places the 1’s occupy.

1
� �

0
�
� 0� 1

�
0
�

0
�

We then add up the values of these places to get a base-10 value: � � � � � 36 � ����� .
To convert a number from decimal to binary, we repeatedly determine the largest power of two that fits

into the number and subtract it, until we reach zero. The binary representation has a 1 bit in each place
whose value we subtracted. Suppose, as an example, we want to convert 88 � ����� to binary. We observe the
largest power of 2 less than 88 is 64, so we decide that the binary expansion of 88 has a 1 in the 64’s place,
and we subtract 64 to get �
�
	 �	� � � � . Then we see than the largest power of 2 less than 24 is 16, so we
decide to put a 1 in the 16’s place and subtract 16 from 24 to get 8. Now 8 is the largest power of 2 that fits
into 8, so we put a 1 in the 8’s place and subtract to get 0. Once we reach 0, we write down which places we
filled with 1’s.

1�
� � �

1
�
� 1�

� � �
We put a zero in each empty place and conclude that the binary representation of 88 � ����� is 1011000 � ��� .

3.1.3 Alternative conversion algorithms

In the previous section, we saw a procedure (an algorithm) for converting between binary notation and dec-
imal notation, and we saw another procedure for converting between decimal notation and binary notation.
Those algorithms work well, but there are alternative algorithms for each that some people prefer.

From binary To convert a number written in binary notation to decimal notation, we begin by thinking
“0,” and we go through the binary representation left-to-right, each time adding that bit to twice the number
we are thinking. Suppose, for example, that we want to convert 1011000 � ��� into decimal notation.

2 =+
2 =+
2 =+
2 =+
2 =+
2 =+
2 =+

1 0 1 1 0 0 0
(2)

1
0
1
1
0
0
0 44 88

22
11
5
2
1
0 1

2
5

11
22
44

(10)

3.1 Binary representation 17

We end up with the answer 88 � ����� .
This algorithm is based on the following reasoning. A five-bit binary number 10110 � ��� corresponds to

� ���	� ��� ��� � �
� ����� �
� ��� � � � � ��� . This latter expression is equivalent to the polynomial

� � � � � � � ��� � � � � �
��� �
where � � � , � � � , � � � , � � � , � � � , and � � � . We can convert this polynomial into an alternative
form. �

� � � � � � � ��� � � � � ����� � � � � � ��� � � �
��� � ��� � � �����
In the algorithm, we’re computing based on the alternative form instead of the original polynomial.

To binary To convert a number in the opposite direction, we repeatedly divide a number by 2 until we
reach 0, each time taking note of the remainder. When we string the remainders in reverse order, we get the
binary representation of the original number. For example, suppose we want to convert 88 � ����� into binary
notation.

2
2
2
2
2
2
2

88
44
22
11
5
2
1
0

R 0
R 0
R 0

R 0
R 1

R 1
R 1

1 0 1 1 0 0 0
(10) (2)

After going through the repeated division and reading off the remainders, we arrive at 1011000 � ��� .
Understanding how this process works is simply a matter of observing that it reverses the double-and-add

algorithm we just saw for converting from binary to decimal.

3.1.4 Other bases

Binary notation, which tends to lead to very long numerical representations, is cumbersome for humans to
remember and type. But using decimal notation obscures the relationship to the individual bits. Thus, when
the identity of the individual bits is important, computer scientists often compromise by using a power of
two as the base: The popular alternatives are base eight (octal) and base sixteen (hexadecimal).

The nice thing about these bases is how easily they translate into binary. Suppose we want to convert
173 � � � to binary. One possible way is to convert this number to base 10 and then convert that answer to
binary. But doing a direct conversion turns out to be much simpler: Since each octal digit corresponds to a
three-bit binary sequence, we can replace each octal digit of 173 � � � with its three-bit sequence.

1�
�

7� 3
�
� 001�

�
111� 011

�
Thus, we conclude 173 � � � � 001111011 � ��� .

To convert the other way, we split the binary number we want to convert into groups of three (starting
from the 1’s place), and then we replace each three-bit sequence with its corresponding octal digit. Suppose
we want to convert 1011101 � ��� to octal.

1�
�

���� 0
� �

1
�
� 1�
���� 1
�

0
�

1
�
� 1�

�
3� 5

��
The first known description of this is in 1299 by a well-known Chinese mathematician Chu Shih-Chieh (1270?–1330?). An

obscure Englishman, William George Horner (1786–1837), later rediscovered the principle known today as Horner’s method.

18 Chapter 3. Data representation

Thus, we conclude 1011101 � ��� � 135 � � � .
Hexademical, frequently called hex for short, works the same way, except that we use groups of four

bits instead. One slight complication is that hexadecimal requires 16 different digits, and we have only 10
available. Computer scientists use Latin letters to fill the gap. Thus, after 0 through 9 come A through F.

0 0 0000 4 4 0100 8 8 1000 C 12 1100
1 1 0001 5 5 0101 9 9 1001 D 13 1101
2 2 0010 6 6 0110 A 10 1010 E 14 1110
3 3 0011 7 7 0111 B 11 1011 F 15 1111

As an example of a conversion from hex to decimal, suppose we want to convert the number F5 � � � �
to base 10. We would replace the F with 1111 � ��� and the 5 with 0101 � ��� , giving its binary equivalent
11110101 � ��� .

3.2 Integer representation

We can now examine how computers remember integers on the computer. (Recall that integers are numbers
with no fractional part, like � , � ��� , or 	 �
� .)

3.2.1 Unsigned representation

Modern computers usually represent numbers in a fixed amount of space. For example, we might decide
that each byte represents a number. A byte, however, is very limiting: The largest number we can fit is
11111111 � ��� � 255 � ����� , and we often want to deal with larger numbers than that.

Thus, computers tend to use groups of bytes called words. Different computers have different word
sizes. Very simple machines have 16-bit words; today, most machines use 32-bit words, though some
computers use 64-bit words. (The term word comes from the fact that four bytes (32 bits) is equivalent
to four ASCII characters, and four letters is the length of many useful English words.) Thirty-two bits is
plenty for most numbers, as it allows us to represent any integer from 0 up to � � � 	 � � 4,294,967,295. But
the limitation is becoming increasingly irritating, and so people are beginning to move to 64-bit computers.
(This isn’t because people are dealing with larger numbers today than earlier, so much as the fact that
memory has become much cheaper, and so it seems silly to continue trying to save money by skimping on
bits.)

The representation of an integer using binary representation in a fixed number of bits is called an un-
signed representation. The term comes from the fact that the only numbers representable in the system
have no negative sign.

But what about negative integers? After all, there are some perfectly respectable numbers below 0. We’ll
examine two techniques for representing integers both negative and positive: sign-magnitude representation
and two’s-complement representation.

3.2.2 Sign-magnitude representation

Sign-magnitude representation is the more intuitive technique. Here, we let the first bit indicate whether
the number is positive or negative (the number’s sign), and the rest tells how far the number is from 0 (its
magnitude). Suppose we are working with 8-bit sign-magnitude numbers.

� would be represented as 00000011
	 � would be represented as 10000011

3.2 Integer representation 19

For 	 3 � ��� , we use 1 for the first bit, because the number is negative, and then we place � into the remaining
seven bits.

What’s the range of integers we can represent with an 8-bit sign-magnitude representation? For the
largest number, we’d want 0 for the sign bit and 1 everywhere else, giving us 01111111, or 127 � ����� . For
the smallest number, we’d want 1 for the sign bit and 1 everywhere else, giving us 	 127 � ����� . An 8-bit
sign-magnitude representation, then, can represent any integer from 	 127 � ����� to 127 � ����� .

This range of integers includes 255 values. But we’ve seen that 8 bits can represent up to 256 different
values. The discrepency arises from the fact that the representation includes two representations of the
number zero (� and 	 � , represented as 00000000 and 10000000).

Arithmetic using sign-magnitude representation is somewhat more complicated than we might hope.
When you want to see if two numbers are equal, you would need additional circuitry so that 	 � is understood
as equal to � . Adding two numbers requires circuitry to handle the cases of when the numbers’ signs
match and when they don’t match. Because of these complications, sign-magnitude representation is not
often used for representing integers. We’ll see it again, however, when we get to floating-point numbers in
Section 3.3.2.

3.2.3 Two’s-complement representation

Nearly all computers today use the two’s-complement representation for integers. In the two’s-complement
system, the topmost bit’s value is the negation of its meaning in an unsigned system. For example, in an
8-bit unsigned system, the topmost bit is the 128’s place.

���
� �
� � � �

� �
� � �

In an 8-bit two’s-complement system, then, we negate the meaning of the topmost bit to be 	 � �
� instead.

� ���
� �
� � � �

� �
� � �

To represent the number 	 100 � ����� , we would first choose a 1 for the 	 � �
� ’s place, leaving us with
� 	 � � � � 	 � 	 � �
� � � �
� . (We are using the repeated subtraction algorithm described in Section 3.1.2. Since
the place value is negative, we subtract a negative number.) Then we’d choose a � for the 16’s place, the 8’s
place, and the 4’s place to reach 0.

1
� ���
� 0�
�

0
� �

1
�
� 1� 1

�
0
�

0
�

Thus, the 8-bit two’s-complement representation of 	 100 � ����� would be 10011100.

� would be represented as 00000011
	 � would be represented as 11111101

What’s the range of numbers representable in an 8-bit two’s-complement representation? To arrive at
the largest number, we’d want 0 for the 	 � �
� ’s bit and 1 everywhere else, giving us 01111111, or 127 � ����� .
For the smallest number, we’d want 1 for the 	 � �
� ’s bit and 0 everywhere else, giving 	 128 � ����� . In an 8-bit
two’s-complement representation, we can represent any integer from 	 128 � ����� up to 127 � ����� . (This range
includes 256 integers. There are no duplicates as with sig-magnitude representation.)

It’s instructive to map out the bit patterns (in order of their unsigned value) and their corresponding
two’s-complement values.

20 Chapter 3. Data representation

bit pattern value
00000000 �
00000001 �
00000010 �

...
01111110 � � �
01111111 � � �

10000000 	 � �
�
10000001 	 � � �

...
11111110 	 �
11111111 	 �

Notice that the two’s-complement representation wraps around: If you take the largest number, 01111111,
and add 1 to it as if it were an unsigned number, and you get 10000000, the smallest number. This wrap-
around behavior can lead to some interesting behavior. In one game I played as a child (back when 16-bit
computers were popular), the score would go up progressively as you guided a monster through a maze. I
wasn’t very good at the game, but my little brother mastered it enough that the score would hit its maximum
value and then wrap around to a very negative value! Trying to get the largest possible score — without
wrapping around — was an interesting challenge.

Negating two’s-complement numbers

For the sign-magnitude representation, it’s easy to represent the negation of a number: You just flip the
sign bit. For the two’s-complement representation, however, the relationship between the representation of
a number and the representation of its negation is not as obvious as one might like.

The following is a handy algorithm for relating the representation of a number to the representation of
its negation: You start at the right, copying bits down, until you reach the first 1, beyond which you flip
every bit. The representation of 12, for example, is 00001100, so its two’s complement representation will
be 11110100 — the lower three bits (below and including the lowest 1) are identical, while the rest are all
different.

000 0 1 1 0 0

1 0 01111 0-12

12

(10)

(10)

 last one bitbits to flip

Why this works is not immediately obvious. To understand it, we first need to observe that if we have a
negative number 	 � and we interpret its two’s-complement representation in the unsigned format, we end
up with � � � 	 � . This is because the two’s-complement representation of 	 � will have a 1 in the uppermost
bit, representing 	 � �
� , but when we interpret it as an unsigned number, we interpret this bit as representing
� �
� , which is � � � more than before. The other bits’ values remain unchanged. Since the value of this
uppermost bit has increased by � � � , the unsigned interpretation of the bit pattern is worth � � � more than the
two’s-complement interpretation.

We can understand our negation algorithm as being a two-step process.

1. We flip all the bits (from 00001100 becomes 11110011, for example).

2. We add one to the number (which would give 11110100 in our example).

3.3 General numbers 21

Adding one to a number flips bits from the right, until we reach a zero. Since we already flipped all the bits
in the first step, this second step flips these bits back to their original values.

Now we can observe that if the original number is � when interpreted as an unsigned number, we will
have � � � 	 � after going through the process. The first step of flipping all bits is equivalent to subtracting
each bit from 1, which is the same as subtracting � from the all-ones number (� � �). Thus, after the first step,
we have the value � � � 	 � . The second step adds one to this, giving us � � � � 	 ��� � � � � � � 	 � . When
the unsigned representation of � � � 	 � is interpreted as a two’s-complement number, we understand it to be
	 � .

Adding two’s-complement numbers

One of the nice things about two’s-complement numbers is that you can add them just as you add regular
numbers. Suppose we want to add 	 � and � .

1001011
+ 0011001

We can attempt to do this using regular addition, akin to the technique we traditionally use in adding base-10
numbers.

11111 1
11111101

+ 00000101
100000010

We get an extra 1 in the ninth bit of the answer, but if we ignore this ninth bit, we get the correct answer.
We can reason that this is correct as follows: Say one of the two numbers is negative and the other is

positive. That is, one of the two numbers has a 1 in the 	 � �
� ’s place, and the other has 0 there. If there is no
carry into the 	 � �
� ’s place, then the answer is OK, because that means we got the correct sum in the last 7
bits, and then when we add the 	 � �
� ’s place, we’ll maintain the 	 � �
� represented by the 1 in that location
in the negative number.

If there is a carry into the 	 � �
� ’s place, then this represents a carry of � �
� taken from summing the �	� ’s
column. This carry of � �
� (represented by a carry of 1), added to the 	 � �
� in that column for the negative
number (represented by a 1 in that column), should give us 0. This is exactly what we get we add the carry
of 1 into the leftmost column to the 1 of the negative number in this column and then throw away the carry
(� �
� ��� � � �).

A similar sort of analysis will also work when we are adding two negative numbers or two positive
numbers. Of course, the addition only works if you end up with something in the representable range. If
you add 120 and 120 with 8-bit two’s-complement numbers, then the result of 240 won’t fit. The result of
adding 120 and 120 as 8-bit numbers would turn out to be 	 � � !

For dealing with integers that can possibly be negative, computers generally use two’s-complement
representation rather than sign-magnitude. It is somewhat less intuitive, but it allows simpler arithmetic.
(It is true that negation is somewhat more complex, but only slightly so.) Moreover, the two’s-complement
representation avoids the problem of multiple representations of the same number (0).

3.3 General numbers

Representing numbers as fixed-length integers has some notable limitations. It isn’t suitable for very large
numbers that don’t fit into 32 bits, like �

� � ��� � � � � , nor can it handle numbers that have a fraction, like � � � � .
We’ll now turn to systems for handling a wider range of numbers.

22 Chapter 3. Data representation

3.3.1 Fixed-point representation

One possibility for handling numbers with fractional parts is to add bits after the decimal point: The first bit
after the decimal point is the halves place, the next bit the quarters place, the next bit the eighths place, and
so on.

� � �
� �
�

�
�

�
�

Suppose that we want to represent 1.625 � ����� . We would want 1 in the ones place, leaving us with � � � � � .
Then we want 1 in the halves place, leaving us with � � � � � 	�� � � � � � � � � . No quarters will fit, so put a 0
there. We want a 1 in the eighths place, and we subtract � � � � � from � � � � � to get 0.

0
�

0
�

1
�
� 1�
�

0�
�

1�
�

So the binary representation of � � � � � would be 1.101 � ��� .
The idea of fixed-point representation is to split the bits of the representation between the places to

the left of the decimal point and places to the right of the decimal point. For example, a 32-bit fixed-point
representation might allocate 24 bits for the integer part and 8 bits for the fractional part.

24 bits 8 bits

integer part fractional part

To represent � � � � � , we would then write

� � � � � � � � � � � � � � � � � ��� ��� ��� � � � � � ��� ��� �

The first three bytes give the � , and the last byte gives the representation of � � � � � .
Fixed-point representation works well as long as you work with numbers within the given range. The

32-bit fixed-point representation described above can represent any multiple of �
�
��� from 0 up to � � ��� 16.7

million. But programs frequently need to work with numbers from a much broader range. For this reason,
fixed-point representation isn’t used very often in today’s computing world.

�

3.3.2 Floating-point representation

Floating-point representation is an alternative technique based on scientific notation. Because we’re work-
ing with computers, we’ll base our scientific notation on powers of 2, not 10 as is traditional. For example,
the binary representation of 5.5 � ����� is 101.1 � ��� . When we convert this to binary scientific notation, we move
the decimal point to the left two places, giving us 1.011 � ��� � ��� . (This is just like converting 101.1 � ����� to
scientific notation: It would be 1.011 � ����� � � � � .)

To represent a number written in scientific notation in bits, we’ll decide how to split up the representation
to fit it into a fixed number of bits. First, let us define the two parts of scientific representation: In 1.011 � ��� �� �
� , we call 1.011 � ��� the mantissa (or the significand), and we call � the exponent. In this section we’ll
use 8 bits to store such a number, divided as follows.

exponent + 7 mantissasign

1 bit 4 bits 3 bits

�
Financial software is a notable exception. Here, designers often want all computations to be precise to the penny, and in fact

they should always be rounded to the nearest penny. There is no reason to deal with very large amounts (like trillions of dollars) or
fractions of a penny. Such programs use a variant of fixed-point representation that represents each amount as an integer multiple
of

��
	�	 , just as the fixed-point representation represents numbers as an integer multiple of
�
����
 .

3.3 General numbers 23

We use the first bit to represent the sign (1 for negative, 0 for positive), the next four bits for the sum of 7
and the actual exponent (we add 7 to allow for negative exponents), and the last three bits for the fraction of
the mantissa. Note that we omit the digit to the left of the decimal point: Since the mantissa has only one
nonzero bit to the left of the decimal point, and the only nonzero bit is 1, we know that the bit to the left of
the decimal point must be a 1. There’s no point in wasting space in inserting this 1 into our bit pattern. We
include only the bits of the mantissa to the right of the decimal point.

We call this a floating-point representation because the values of the mantissa bits “float” along with the
decimal point, based on the exponent’s given value. This is in contrast to fixed-point representation, where
the decimal point is always in the same place among the bits given.

Continuing our example of 5.5 � ����� � 1.011 � ��� � � � , we add 7 to 2 to arrive at 9 � ����� � 1001 � ��� for the
exponent bits. Into the mantissa bits we place the bits following the decimal point of the scientific notation,
� � � . This gives us

� � � � � � � �
as the 8-bit floating-point representation of 5.5 � ����� .

Suppose we want to represent 	 96 � ����� .
1. First we convert our desired number to binary: 	 1100000 � ��� .
2. Then we convert this to binary scientific notation: 	 1.100000 � ��� � � � .
3. Then we fit this into the bits.

(a) We choose 1 for the sign bit if the number is negative. (It is, in this case.)

(b) We add 7 to the exponent and place the result into the four exponent bits. (In this case, we arrive
at � � � � 13 � ����� � 1101 � ��� .)

(c) The three mantissa bits are the first three bits following the leading 1: � � � . (If there are more
than three bits, then rounding will be necessary.)

Thus we end up with � � � � � � � � .

Conversely, suppose we want to decode the number � � � � � � � � .

1. We observe that the number is positive, and the exponent bits represent 0101 � ��� � 5 � ����� . This is 7
more than the actual exponent, and so the actual exponent must be 	 � . Thus, in binary scientific
notation, we have 1.100 � ��� � � � � .

2. We convert this to binary: 1.100 � ��� � � � � � 0.011 � ��� .
3. We convert the binary into decimal: 0.011 � ��� � �

�
� �� � �� � 0.375 � ����� .

Alternative conversion algorithm

The process described above for converting from decimal to binary representation relies implicitly on the
repeated subtraction algorithm of Section 3.1.2. For example, we arrive at 101.1 � ��� for 5.5 � ����� by subtract-
ing � , then � , then � � � . If we wanted to convert 2.375 � ����� , we would choose a 1 for the 2’s place (leaving
� � � �

�), the ��� � ’s place (leaving � � � � �), and the ����� ’s place (leaving �), giving us 10.011 � ��� .
Alternatively, we can use a process inspired by the repeated division algorithm of Section 3.1.3. Here,

we convert to binary in two steps.
� We take the portion to the left of the decimal point and use the repeated division algorithm of Sec-

tion 3.1.3. In the case of 2.375 � ����� , we would take the � to the left and repeatedly divide until we reach
0, reading the remainders to arrive at 10 � ��� .

24 Chapter 3. Data representation

2
2

1 0
(2)

2
1
0

R 0
R 1

� We take the portion to the right of the decimal point and repeatedly multiply it by 2, each time
extracting the bit to the right of the decimal point, until we reach 0 (or until we have plenty of bits to
fill out the mantissa bits). In the example of 2.375 � ����� , the fractional part is .375 � ����� . We repeatedly
multiply this by 2, each time taking out the integer part as the next bit of the binary fraction, arriving
at � � � .

1
(2)

10

2 = 0.75.375

2 = 1.5.75

2 = 1.0.5

These bits are the bits following the decimal point in the binary representation. Placed with the bits
before the decimal point determined in the previous step, we would conclude with 1.011 � ��� .

Representable numbers

This 8-bit floating-point format can represent a wide range of both small numbers and large numbers. To
find the smallest possible positive number we can represent, we would want the sign bit to be 0, we would
place 0 in all the exponent bits to get the smallest exponent possible, and we would put 0 in all the mantissa
bits. This gives us 0 0000 000, which represents

1.000 � ��� � � � �
 � � �
 � 0.0078 � ����� �
To determine the largest positive number, we would want the sign bit still to be 0, we would place 1 in all
the exponent bits to get the largest exponent possible, and we would put 1 in all the mantissa bits. This gives
us 0 1111 111, which represents

1.111 � ��� � � �
�

�
 � 1.111 � ��� � �
�
� 111100000 � ��� � 480 � ����� �

Thus, our 8-bit floating-point format can represent positive numbers from about 0.0078 � ����� to 480 � ����� . In
contrast, the 8-bit two’s-complement representation can only represent positive numbers between � and � � �

.
But notice that the floating-point representation can’t represent all of the numbers in its range — this

would be impossible, since eight bits can represent only �
�
� � � � distinct values, and there are infinitely

many real numbers in the range to represent. Suppose we tried to represent 17 � ����� in this scheme. In binary,
this is 10001 � ��� � 1.0001 � ��� � �	� . When we try to fit the mantissa into the mantissa portion of the 8-bit
representation, we find that the final 1 won’t fit: We would be forced to round. In this case, computers
would ignore the final 1 and use the pattern 0 1011 000. � That rounding means that we’re not representing
the number precisely. In fact, � � � � � � � � translates to

1.000 � ��� � � ��� �
 � 1.000 � ��� � � � � 10000 � ��� � 16 � ����� �
�
Computers generally round to the nearest possibility. But, when we are exactly between two possibilities, as in this case, most

computers follow the policy of rounding so that the final mantissa bit is 0. This detail of exactly how the rounding occurs is not
important to our discussion, however.

3.3 General numbers 25

Thus, in our 8-bit floating-point representation, 17 equals 16! That’s pretty irritating, but it’s a price we have
to pay if we want to be able to handle a large range of numbers with such a small number of bits.

While a floating-point representation can’t represent all numbers precisely, it does give us a guaranteed
number of significant digits. For this 8-bit representation, we get a single digit of precision, which is
pretty limited. To get more precision, we need more mantissa bits. Suppose we defined a similar 16-bit
representation with 1 bit for the sign bit, 6 bits for the exponent plus 31, and 9 bits for the mantissa.

sign

1 bit

mantissaexponent + 31

6 bits 9 bits

This representation, with its 9 mantissa bits, happens to provide three significant digits. Given a limited
length for a floating-point representation, we have to compromise between more mantissa bits (to get more
precision) and more exponent bits (to get a wider range of numbers to represent). For 16-bit floating-point
numbers, the 6-and-9 split is a reasonable tradeoff of range versus precision.

IEEE standard

Nearly all computers today follow the the IEEE standard, published in 1980, for representing floating-point
numbers. This standard is similar to the 8-bit and 16-bit formats we’ve explored already, but the standard
deals with longer lengths to gain more precision and range. There are three major varieties of the standard,
for 32 bits, 64 bits, and 80 bits.

sign exponent mantissa exponent significant
format bits bits bits excess digits
Our 8-bit 1 4 3 7 1
Our 16-bit 1 6 9 31 3
IEEE 32-bit 1 8 23 127 6
IEEE 64-bit 1 11 52 1,023 15
IEEE 80-bit 1 15 63 16,383 19

All of these formats use an offset for the exponent, called the excess. In all of these formats, the excess is
halfway up the range of numbers that can fit into the exponent bits. For the 8-bit format, we had 4 exponent
bits; the largest number that can fit into 4 bits is � � 	 � � � � , and so the excess is

�
� � � ��� . The IEEE

32-bit format has 8 exponent bits, and so the largest number that fits is � � � , and the excess is � � �
� � � � ��� .

The IEEE standard formats generally follow the rules we’ve outlined so far, but there are two exceptions:
the denormalized numbers and the nonnumeric values. We’ll look at these next.

Denormalized numbers (optional)

The first special case is for dealing with very small values. Let’s go back to the 8-bit representation we’ve
been studying. If we plot the small numbers that can be represented exactly on the number line, we get
the distribution illustrated in Figure 3.2(a). The smallest representable positive number is � �
 � �

���
� (bit

pattern 00000000), and the largest representable negative number is 	 � �
 � � �
���
� (bit pattern 10000000).

These are small numbers, but when we look at Figure 3.2(a), we see an anomaly: There is a relatively large
gap between them. And — notice — there is no exact representation of one of the most important numbers
of all: zero!

To deal with this, the IEEE standard defines the denormalized numbers. The idea is to take the most
closely clustered numbers illustrated in Figure 3.2(a) and spread them more evenly across 0. This will give
us the diagram in Figure 3.2(b).

26 Chapter 3. Data representation

1
32

9/8
32128

1

00011000
00011001

1
16

9/8
1664

1 17/8
64128

9/8
0

17/8
128

00000000 0000111110000000

128
-1

00000111
00001000

00010001
0001000000000001

(a) With no denormalized case

1
32

9/8
3264

1/8

positive
normalized

numbers

00011000
00011001

64
7/8 1

16
9/8
16

negative
normalized

numbers

denormalized
numbers

64
1 17/8

64
0 or
-0

00000001 00001000
00000111 00001111

00010000
00010001or 10000000

00000000

(b) With a denormalized case

Figure 3.2: Distribution of small floating-point numbers with and without a denormalized case.

Those closely-clustered numbers in Figure 3.2(a) are those whose exponent bits are all 0. We’ll change
the meanings of these numbers as follows: When all exponent bits are 0, then the exponent is 	 � , and
the mantissa has an implied 0 before it.

�

Consider the bit pattern � � � � � � � � : In a floating-point format
incorporating the denormalized case, this represents 0.010 � ��� � � �

� � ��� � �

�
� �

�
��� . (Without the

denormalized case, this would represent 1.010 � ��� � � �
 . The changes are in the bit before the mantissa’s
decimal point and in the exponent of 	 �

.)
Suppose we want to represent 0.005 � ����� in our 8-bit floating-point format with a denormalized case. We

first convert our number into the form � � � �

�
. In this case, we would get 0.320 � ����� � � �

�
. Converting

0.320 � ����� to binary, we get approximately 0.0101001 � ��� . In the 8-bit format, however, we have only three
mantissa bits, and so we would round this to 0.011 � ��� . Thus, we have 0.011 � ��� � � �

�
, and so our bit

representation would be � � � � � � � � . This is just an approximation to the original number of 0.005 � ����� : It
is about 0.00586 � ����� . Without the denormalized case, the best approximation would be much further off
(0.00781 � �����).

How would we represent 0? We go through the same process: Converting this into the form � � � �

�
,

we get � � � � � �

�
. This translates into the bit representation � � � � � � � � .

Why 	 � for the exponent? It would make more intuitive sense to use 	 �
, since this is what the all-zeroes

exponent is normally. We use 	 � , however, because we want a smooth transition between the normalized
values and the denormalized values. The least positive normalized value is � � � �

�
(bit pattern 0 0000 000).

If we used 	 �
for the denormalized exponent, then the largest denormalized value would be 0.111 � ��� � � �
 ,

which is roughly half of the smallest positive normalized value. By using the same exponent as for the
smallest normalized case, the standard spreads the denormalized numbers evenly from the smallest positive
normalized number to 0. Figure 3.2(b) diagrams this: The open circles, representing values handled by the
denormalized case, are spread evenly between the solid circles, representing the numbers handled by the
normalized case.

�
The word denormalized comes from the fact that the mantissa is not in its normal form, where a nonzero digit is to the left of

the decimal point.

3.4 Representing multimedia 27

The denormalized case works the same for the IEEE standard floating-point formats, except that the
exponent varies based on the format’s excess. In the 32-bit standard, for example, the denormalized case is
still the case when all exponent bits are zero, but the exponent it represents is 	 � � � (since the normalized
case involves an excess-127 exponent, and so the lowest exponent for normalized numbers is � 	 � � � �
	 � � �).

Nonnumeric values (optional)

The IEEE standard’s designers were concerned with some special cases — particularly, computations where
the answer doesn’t fit into the range of defined numbers. To address such possibilities, they reserved the
all-ones exponent for the nonnumeric values. They designed two types of nonnumeric values into the IEEE
standard.

� If the exponent is all ones and the mantissa is all zeroes, then the number represents infinity or negative
infinity, depending on the sign bit. Essentially, these two values are to represent numbers that have
gone out of bounds. This value results from an overflow; for example, if you doubled the largest
positive value, you would get infinity. Or if you divide 1 by a tiny number, you would get either
infinity or negative infinity.

� If the exponent is all ones, and the mantissa has some non-zero bits, then the number represents “not
a number,” written as NaN. This represents an error condition; some situations where this occurs
include finding the square root of 	 � , computing the tangent of � ��� , and dividing 0 by 0.

3.4 Representing multimedia

Programs often deal with much more complex data than characters, integers, and real numbers. In this
section, we’ll look at the representation of images, video, and sound.

3.4.1 Images: The PNM format

Most techniques for representing images work by first breaking the image into a grid of pixels; each pixel is
a small atom of color in the overall image. The word pixel comes from picture element. (This isn’t the only
way to represent an image: An important alternative is to represent the image by component shapes. This
works well for computer-generated drawings, but it works poorly for photographs.)

There are many different formats for representing images. We’ll look at one of the simplest: the PNM
format. (PNM stands for Portable aNyMap.) In this format, we represent a picture as a sequence of ASCII
characters.

P1
7 7
0 0 0 0 0 0 0
0 1 1 1 1 0 0
0 1 0 0 0 0 0
0 1 1 1 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0

The file begins with the format type — in this case, it is “P1” to indicate a black-and-white image. The next
line provides the width and height of the image in pixels. The rest of the file contains a sequence of ASCII
0’s and 1’s, representing each pixel starting in the upper left corner of the image and going in left-to-right,
top-down order. A 1 represents a black pixel, while a 0 represents a white pixel. In this example, the image
is a

�
�

�
image that looks like the following.

28 Chapter 3. Data representation

Representing images as text in this way is simple, but it is also very wasteful: Each pixel of the image
requires 16 bits (one for the 0 or 1 ASCII code, and one for the ASCII code for the space that separates it
from the next pixel’s number). PNM has an alternative binary format where we spend only one bit per pixel.
Here is an example; since an ASCII representation of the file would make no sense, we have to look at the
binary contents directly.

byte value description
1 01010000 ASCII code for P
2 00110100 ASCII code for 4
3 00001010 ASCII code for line break
4 00110111 ASCII code for 7
5 00100000 ASCII code for space
6 00000111 ASCII code for 7
7 00001010 ASCII code for line break
8 00000000 first eight pixels (all of row 1, plus a pixel of row 2)
9 11110001 next eight pixels (rest of row 2, plus 2 pixels of row 3)

10 00000011 next eight pixels (rest of row 3, plus 3 pixels of row 4)
11 10000100 next eight pixels (rest of row 4, plus 4 pixels of row 5)
12 00001000 next eight pixels (rest of row 5, plus 5 pixels of row 6)
13 00000000 next eight pixels (rest of row 6, plus 6 pixels of row 7)
14 00000000 last pixels (rest of row 7, the rest padded with 0’s)

The file begins the same as with the ASCII file (except the header is now “P4” instead of “P1”, which in the
PNM format indicates that the data within the file is in binary (not ASCII) black-and-white format). When
we reach the data describing individual pixels, however, it switches to packing the pixels together into bytes.

With the earlier ASCII version, the picture took 105 bytes to represent; this version takes only 14. This
technique is not what the term image compression describes, however. For black-and-white images, the
“uncompressed” representation is where you have one bit for each pixel, just as we have in this binary PNM
format. A “compressed” image is one where the image is described using less than one bit per pixel.

3.4.2 Run-length encoding

Describing a black-and-white image with less than one bit per pixel may sound at first like an impossibility.
It can be achieved in many cases, however, by taking advantage of the fact that useful images generally have
some form of pattern.

We’ll look at one particularly simple compression technique called run-length encoding. Suppose we
begin our file the same as the PNM format, with a file format descriptor followed by the image’s dimensions.
When we get to describing the pixels’ values, however, we repeatedly use bytes in the following format.

4 bits4 bits

adjacent
white pixels black pixels

adjacent

3.4 Representing multimedia 29

Here, we have four bits describing the number of adjacent white pixels as we go through the image in
left-to-right, top-down order; then we have four bits describing the number of adjacent black pixels.

�

If we were to encode the same F image we’ve been examining, it would look as follows. (This would
not actually be a valid PNM file; the PNM format does not allow for such compression techniques.)

byte value description
1 01010000 ASCII code for P
2 00110111 ASCII code for 7
3 00001010 ASCII code for line break
4 00110111 ASCII code for 7
5 00100000 ASCII code for space
6 00000111 ASCII code for 7
7 00001010 ASCII code for line break
8 10000100 image has eight white pixels, followed by four black pixels
9 00110001 image has three white pixels, followed by one black pixels

10 01100011 image has six white pixels, followed by three black pixels
11 01000001 image has four white pixels, followed by one black pixels
12 01100001 image has six white pixels, followed by one black pixels
13 11000000 image has twelve white pixels, followed by no black pixels

You can see that this scheme has shaved one byte from the uncompressed binary PNM format, which had
14 bytes for the same image.

Run-length encoding isn’t always effective. Suppose we want to encode a checkerboard pattern.

Run-length encoding would look at this and see that each “run” of white pixels and of black pixels is
only 1 pixel long. Thus our scheme would spend repeatedly use eight bits (00010001) to describe two
adjacent pixels, whereas the uncompressed scheme would take only two bits for the same pixels. Thus the
“compressed” image would actually be about four times larger than the uncompressed version! In many
cases, however, run-length encoding turns out to be an effective compression technique, particularly in
images that have large white or black regions.

Popular image formats, like the GIF and JPEG formats, usually do not use run-length encoding. They
use more complex compression techniques that we will not explore here. Like run-length encoding, these
techniques also take advantage of repetition in images, but they identify more complex repeated patterns in
the image than the simple one-pixel repetition handled by run-length encoding.

3.4.3 General compression concepts

We’ve seen that run-length encoding isn’t 100% effective. That is, sometimes it gives us something that is
the same size or even longer than the original. This is disappointing. Why not study a perfect compression
technique, one that always compresses a file?

There is a very good reason for this: Perfect compression is impossible. The following argument is a
mathematical proof for this important fact.

�
Using four bits, we can represent numbers only up to 15. If there are more than 15 adjacent pixels of the same color, we can

describe them as several groups of 15 or fewer pixels, interleaved with groups of 0 pixels of the other color.

30 Chapter 3. Data representation

Theorem 2 No perfect compression technique exists.

Proof: Suppose you described a perfect compression technique to me, and I had an � -bit file I wanted
to compress. I could apply your technique to my file � times, and each time your technique (being
perfect) would give me a shorter file. I would end up with a zero-bit file. Now, to be a reasonable
compression technique, there must be some corresponding decompression technique to arrive at the
original. I can decompress this zero-bit file � times to arrive at the original file.

Now suppose I have a different � -bit file and I compress it � times. This will give me a zero-bit
file again, and we’ve already seen that when we decompress a zero-bit file � times, it gives me the
first file I compressed. Thus, a file compressed does not always decompress to the same thing; in
other words, your proposed compression technique doesn’t work.

Some image formats (including the JPEG format) use lossy compression. In lossy compression, we
are willing to “lose” some of the original information for the sake of shorter files. The above proof relies
on the fact that an “effective” compression algorithm must be able to restore a compressed file to the exact
original. With lossy compression techniques, we forgo this requirement, and thus it’s possible to have a
lossy compression algorithm that always reduces a file’s size.

The trick is to make a lossy compression algorithm that doesn’t lose any important information. Luckily,
images — particularly photographs — tend to be very rich in extraneous information: A picture of a tree, for
example, would have a different shade of green for virtually every leaf, and we don’t need all those different
shades to understand we’re looking at a tree.

3.4.4 Video

In principle, storing video isn’t very different from images: You can simply store an image every �
� �

seconds.
(Since movies have 24 frames per second, this would give film-quality animation.)

The problem is that this eats up lots of space: Suppose we have a 90-minute � �	� � � � � � video, where
we represent each pixel with three bytes. (The � �	� ��� � � � resolution would give a � � ��� � -inch picture.)
This would require

� � min �
� � sec
min

�
� � frames

sec
�
� �	� � � � � � pixels

frame
�
� bytes
pixel

� � � � GB �

We would need 23 DVDs to store the 90-minute movies. (A DVD can hold 15.9 GB.) If we wanted to use
CDs, we would need 567 of them!

Compression is a necessity when you’re dealing with video. Luckily, lossless compression is not impor-
tant: Since each frame shows for only a fraction of a second, imperfections in a single frame aren’t going to
show up.

One simple compression technique is similar to the run-length compression technique, but we look for
run-lengths along the time dimension. In this technique, we list only the pixels in each frame that differ
from the previous frame. Listing each pixel involves giving the coordinates of each pixel, plus the color of
that pixel.

This works well when the camera is still, when the background tends to remain unchanged. When
the camera pans or zooms, however, it causes problem. To provide for these cases also, popular video
compression formats (such as MPEG) provide for a more complex specification of the relationship between
the pixels of two adjacent frames.

3.4.5 Sound

Sound is another important medium to represent in modern computing systems. Sound consists of vibrations
in the air, which can be modeled as a graph of amplitude over time.

3.4 Representing multimedia 31

am
pl

itu
de

time

(This is a very simple, regular amplitude graph. The graphs you frequently see, especially for human speech,
tend to be much more irregular and spiky.)

One way of representing the sound is to divide the amplitude graph into regular intervals and to measure
the graph’s height at each interval.

am
pl

itu
de

time

Then, we can store the height of the subsequent intervals. A system can interpolate between the sampled
points to reproduce the original sound.

This technique of sampling is exactly the one used by CDs, which include samples of the amplitude
graph taken 44,100 times a second. (The designers chose 44,100 times because the human ear can sense
tones with a frequency of up to 22 KHz. That is, the human ear can handle tones that go from down to up
to down again 22,000 times a second. By sampling at twice that rate, they get both the “down” and the “up”
of such cycles so that the sound producer, which interpolates between the samples, can reproduce the sound
wave.) CDs use 16 bits to represent each sample’s height, and they include samples for both the left and
the right speaker to achieve a stereo effect, for a total of 32 bits per sample. Thus, to store music in the CD
format, you need � � megabytes for each minute of sound:

�
� �	� � � samples
sec

�
� � bits
sample

�
byte
� bits

�
MB

����� bytes
�
� � sec
min

� � � MB
min

�

Since CDs typically store around � � � MB, they can hold around 65 minutes of sound. (Some CDs can hold
slightly more data, providing for somewhat longer recordings.)

CDs provide high-quality sound through a high sampling rate, but this contains much extraneous infor-
mation that most ears can’t hear. It leaves a lot of room for more efficient representations of sound data.

The MP3 audio format is a particularly popular alternative. It uses a more complex understanding of
how the human ear perceives sound. The human ear works by recognizing dominant frequencies in the
sound it receives. Thus, to convert a sound to MP3 format, computers analyze a sound for the dominant sine
waves that add up to the original wave.

32 Chapter 3. Data representation

am
pl

itu
de

time

Computers would ignore any frequencies beyond the ear’s limit of 22 KHz, and they give some preference
to waves in the range where the ear is most sensitive (2–4 KHz). Then, it stores the frequencies for these sine
waves in the MP3 file. The result is a file representing the most important data that is needed to reproduce a
sound for the human ear. Through this, and through some more minor techniques, the MP3 files tends to be
approximately ��� � � the size of the simple sampling technique used for CDs.

Chapter 4

Computational circuits

We saw several simple circuits in Chapter 2. But all these circuits did was to compute some weird function
of a combination of bits. Why would anybody want to do that? I can forgive you if you felt underwhelmed.

Now that we understand the basics of data representation, we can explore more useful circuits for per-
forming computation. In this chapter, we examine circuits for adding numbers together and circuits to
remember data.

4.1 Integer addition

First we’ll examine a circuit for adding integers, something that we can certainly agree that a computer
needs to do.

To work toward such a circuit, we first think about how we would do this on paper. Of course, we already
understand how to do this for base-10 numbers. The computer will add binary numbers, but we can still use
a similar approach. Suppose, for example, that we want to add 253 � ����� � 11111101 � ��� and 5 � ����� � 101 � ��� .

11111 1
11111101

+ 101
100000010

The result here is 100000010 � ��� � 258 � ����� .
In Section 3.2.3 we saw that to add numbers in a two’s-complement format, we can simply perform

regular addition as if they are unsigned and then throw out any extra bits (like the uppermost bit in the above
example). The above, then, could also be understood as the computation of 	 � � � , which would yield a
solution of � . Thus, though we will build a circuit for unsigned integers, our circuit will apply to adding
two’s-complement signed integers too.

The addition technique is fine on paper, but the computer doesn’t have the luxury of a pencil and paper
to perform computation like this. We need a circuit. We’ll break the design process into two smaller pieces.
The first, called a half adder, is for the rightmost column. (The box is intentionally drawn empty; we’ll see
what circuit it represents soon.)

 sum

out
c

adder
half

a

b

34 Chapter 4. Computational circuits

It takes two inputs, representing the two bits in the rightmost column of our addition, and it has two outputs,
representing the bit to place in the sum’s rightmost column (� ���) and the bit to carry to the next column
(�������).

For each of the other columns, we’ll have three inputs: the carry from the previous column (�
	��) and the
two bits in the current column. We’ll call the circuit to add these three bits together a full adder.

a

b

 sum

out

in
c

c

full
adder

The two outputs have the same meaning as with the half adder.

The half adder

To build the half adder, we consider the four possible combinations of bits for the two inputs. We can draw
a truth table for this.

� � �����
� � �
�
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Notice that the ������� output is the AND function on � and � . The � ��� output is called the exclusive-or
function (abbreviated XOR), so named because it is like an OR, but it excludes the possibility of both inputs
being 1. We draw a XOR gate as an OR gate with a shield on its inputs. �

To design a XOR gate using AND, OR, and NOT gates, we observe that the sum-of-products expression
is � � � � � , from which we can construct a circuit.

 sum

a

b

With a XOR gate built, we can now put together our half adder.

 sum

out
c

b

a

�
Incidentally, many people use use a circled plus sign to represent XOR in Boolean expressions. In this system, ����� represents

� XOR � .

4.2 Circuits with memory 35

The full adder

To design our full adder, we combine two half adders. The first half adder finds the sum of the first two input
bits, and the second sums the first half adder’s output with the third input bit.

out
c

a

b

half
adder

 sum

half
adder

in
c

Technically, you might say, we should use another half adder to add the carry bits from the two half adders
together. But since the carry bits can’t both be 1, an OR gate works just as well. (We prefer to use an OR
gate because it is only one gate, and a half adder uses several; thus, the OR gate is cheaper.)

Putting it together

To build our complete circuit, we’ll combine a half adder and several full adders, with the carry bits strung
between them. For example, here is a four-bit adder.

adder
half

a 3
a 2

a 1
a 0

full
adder

full
adder

full
adder

o 2
o 1

o 0
o 4

o 3

0b
b 1

b 2
b 3

This diagram supposes that the first input is of the form �
�

�
�

�
�

�
� — that is, we call the 1’s bit of the four-

bit number �
� , the 2’s bit �

� , the 4’s bit �
� , and the 8’s bit �

� . (If we were dealing with two’s-complement
numbers, �

� would represent the 	 � ’s bit, and the circuit would add properly.) Similarly, the second input is
of the form �

�
�
�

�
�

�
� . Numbering the bits this way — starting with 0 for the 1’s bit — may seem confusing:

This numbering system comes from the fact that � � � � and so �
� is for the 1’s bit, while �

� is for the 2’s bit
since � � � � . Each bit �

� stands for the � � ’s bit. Designers conventionally use this system for numbering
bits.

4.2 Circuits with memory

For a computer to be able to work interactively with a human, it must have some form of memory. In
working toward this goal, we’ll begin by examining a particular type of circuit called a latch.

4.2.1 Latches

It would be nice to have some circuit that remembers a single bit, with a single output representing this bit,
and two inputs allowing us to alter the circuit’s value when we choose.

latch

D
Q

set

data

36 Chapter 4. Computational circuits

We’ll call the two inputs ��� � and
��� � �

. When ��� � is 0, the circuit should do nothing except continue emitting
what it remembers. But when ��� � becomes 1, the circuit should begin remembering

��� � �
’s value instead.

��� � ��� � �
memory

0 0 unchanged
0 1 unchanged
1 0 0
1 1 1

Such a circuit is called a D latch. It’s called a latch because it holds a value. The D designation refers to the
particular way the ��� � and

��� � �
inputs work. (In particular, D stands for Data.) In this subsection we’ll see

how to build such a latch.

SR latch

We begin by considering the following little circuit.

Q
R

S

The OR gates with circles after them are NOR gates. They’re a combination of an OR gate with a NOT gate
attached: Given the inputs � and � , a NOR gate outputs the value �
� � .

This circuit — with its output � going into the upper NOR gate, whose output loops back to the gate
computing � — is peculiar: We haven’t seen a circuit with such loops before. This loop is what will give
rise to our memory.

So what does this circuit do? We can fill out the following table for what � this circuit will compute
given various combinations of � , � , and the current value of � . We include the current value of � (labeled
“old � ”) among the input columns of the table because � ’s value loops back as an input to one of the gates.

� � old � new �
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 ignore
1 1 1 ignore

To see how we arrive at this table, let’s take the first row as an example, when � and � are both 0, and when
� is currently 0. In this case, the lower NOR gate must be emitting a 0, since that is what � is. This 0,
and the � input of 0, are the inputs to the upper NOR gate, so the upper NOR gate emits a 1. Tracing this
around, this 1 is an input to the lower NOR gate, along with the � input of 1, so the lower NOR gate emits
a 0. We can continue tracing this around, and the output of the lower NOR gate will continue being 0; thus,
we write 0 for the new � value in the first row.

4.2 Circuits with memory 37

Now let’s say we change the � input to be 1 — this moves us to the fifth row of the table, when � is 1,
� is 0, and � is 0. Now look at the upper NOR gate: It receives the � input of 1 and the � input of 0, so
the upper gate emits 0. But this changes the output of the lower NOR gate: With the 0 input from the upper
NOR gate, and the � input of 0, the lower NOR gate emits 1. Now this 1 goes up to the upper NOR gate,
and, with the � input of 1, the NOR gate continues to output 0. Now the circuit is again in a stable state, but
with � now being 1. Thus a 1 is in the last column for the fifth row. We can continue this sort of analysis to
complete the other five rows labeled in the above truth table.

As for the last two rows, we’re simply going to avoid them. We’ll assume nobody will ever set both �
and � inputs to 1, since such inputs won’t be useful to us.

Examining the other rows of the table, we notice that if both � and � are 0 (the first two rows), then
� remains unchanged; that is, it remembers a bit. If � is 0 and � is 1 (the third and fourth rows), then
� becomes 0 regardless of its previous value. And if � is 1 and � is 0 (the fifth and sixth rows), then �
becomes 1 regardless of its previous value. We can tabulate this as follows.

� � memory
0 0 unchanged
0 1 0
1 0 1
1 1 ignore

This circuit is called an SR latch. Again, it’s a latch because it holds a bit. The � and � refer to the
traditional names of the inputs. The names � and � derive from the fact that when � is 1, the remembered
bit is Set to 1, and when � is 1, the remembered bit is Reset to 0.

D latch

With an SR latch in hand, we can build the D latch we set out to design, which you can recall has inputs of
��� � and

��� � �
. What we’ll do is translate the various combinations of ��� � and

� � � �
to the required � and �

inputs corresponding to desired behavior; from this, we can build a circuit incorporating an SR latch.

��� � � � � �
desired � � �

0 0 old � 0 0
0 1 old � 0 0
1 0 0 0 1
1 1 1 1 0

For the first row of this table, we had already decided that we want the new � to remain the same when ��� �
is 0. We’ve seen that the way to accomplish this using an SR latch is to set both � and � to 0. Thus, you see
� and � in the last two columns of the first row. Deriving the other rows proceeds similarly.

Based on this table, we can determine that � should be ��� � � � � � � , while � should be ��� � � ��� � � . We use
this to build a circuit giving our desired D latch behavior.

Q

data

set

38 Chapter 4. Computational circuits

4.2.2 Flip-flops

The D latch gives us the ability to remember a bit, but in practice it’s more convenient to have components
whose values change only at the instant that the ��� � input changes to 1. This reduces confusion about what
happens when

��� � �
changes if ��� � is still 1. Such a circuit — whose value changes only at the instant that

its ��� � input changing values — is called a flip-flop. For these circuits, we will call the ��� � input the clock.

D flip-flop

Consider the following circuit, called a D flip-flop.

data data

 setck

Qlatch
D

Notice what this circuit does to compute the ��� � input to the D latch: It computes ��� � ��� . (The ��� name
here stands for clock.) This is weird: According to the law ��� � � � from Boolean algebra, the AND gate
would always output 0. What’s the point of having a latch if its ��� � input is always 0?

This apparent pointlessness is explained by considering the fact that gates are physical devices, and
they take time to respond to inputs. To understand how this circuit really works, it’s useful to look at the
following illustration, called a timing diagram.

time a. c.b.

ck

ck

ckck

The horizontal axis represents time. The upper line of the diagram (labeled ���) indicates that ��� begins
at 0, then changes to 1, then back to 0, then back to 1. The first change to � occurs at instant � in time
(diagrammed with a vertical dashed line with a label below it). Since electricity is a physical quantity,
voltage cannot change instantaneously, so in this diagram each change in value is diagrammed with a slanted
line.

Let’s look at what happens at time � : The outputs of the NOT and AND gates do not immediately change
when ��� changes, because they take time to sense the change and react. The beginning of the NOT gate’s
reaction appears in the diagram at time � . More surprisingly, the AND gate reacts at time � , too: You can see
from the diagram that between � and � , the AND gate sees a 1 from ��� and a 1 from ��� . The AND gate’s
behavior is to output a 1 in this circumstance, so at time � it begins emitting a 1. By time � , it detects that
the NOT gate is now at 0, and so the AND gate’s output changes back to 0. Thus, the AND gate outputs 1
for a brief instant whenever ��� changes from 0 to 1.

In the flip-flop circuit, then, when ��� changes from 0 to 1, the ��� � input to the D latch instantaneously
becomes 1, and the D latch will remember whatever

��� � �
holds at that instant. Then its ��� � input switches

back to 0 again, so that further changes to
��� � �

do not influence the latch (until, that is, ��� changes from 0
to 1 in its next cycle).

In circuit diagrams, we represent the D flip-flop as follows.

4.2 Circuits with memory 39

o1

o0

o3

o2

1000

Q
flip−flop

Q
D

 D

Q
flip−flop

Q
D

 D

Q
flip−flop

Q
D

 D

Q
flip−flop

Q
D

 D

in

adder

four−bit

Figure 4.1: A four-bit counter.

flip−flop

Q

Q

D
 D

The triangle is traditional way of denoting an input for which the component acts only when the input
changes from 0 to 1. Notice that this component also outputs � . The flip-flop outputs this value because it
is easy to compute. (The upper NOR gate in the underlying SR latch generates it.) It’s often convenient to
take advantage of this additional output in circuits.

4.2.3 Putting it together: A counter

Suppose we want a circuit that counts how many times the user has given it a 1 bit as an input. Such a
simple circuit would be useful, for example, in a turnstile to count people entering. To do this, we’ll use four
flip-flops, to remember the current count in binary. (Our counter will only count up to 15, the largest four-bit
number, and then it will reset to 0. If we want to count higher, we would need more flip-flops.) And we’ll
include a four-bit adder to compute the next value for these four flip-flops. Figure 4.1 contains a diagram of
our circuit.

To get a feel for how the circuit of Figure 4.1 works, suppose the ��� input is 0, and all the D flip-flops

40 Chapter 4. Computational circuits

hold 0. Then these outputs would be fed into the four-bit adder, which also takes its other input of 0001 � ��� ,
and would output 0000 � ��� � 0001 � ��� � 00001 � ��� . The lower four bits of this output are fed into the D
flip-flops’ � inputs, but the flip-flops’ values don’t change, because their clock inputs (wired to ���) are all
0. (The upper bit of the adder’s output is ignored — in the circuit, we acknowledge this by representing that
the output is grounded.)

When the ��� input changes to 1 again, then the flip-flops’ values will suddenly change their remembered
values to 1, and the circuit’s outputs will reflect this. Also, the four-bit adder would now receive 0001 for its
upper four-bit input, so that the adder would output 0001 � ��� � 0001 � ��� � 00010 � ��� . This goes into the flip-
flops, but the flip-flops values won’t change again, because flip-flops change their value only at the instant
that ��� becomes 1, and that time has long past before 0010 � ��� reaches them.

This last point, by the way, illustrates the point of using flip-flops instead of latches. Suppose we used
latches instead. Because the ��� � input would still be 1 at this point, the latches would begin remembering
0010 � ��� . And this would go through the adder, and the 0011 � ��� would go into the latches. This would go
through the adder, and 0100 � ��� would go into the latches. The circuit would count incredibly fast until finally
��� � would go to 0. We wouldn’t be able to predict where it stops. � Using flip-flops, however, the count goes
up only once each time the input goes to 1.

4.3 Sequential circuit design (optional)

Circuits whose output is dependent solely on the current inputs of the circuit are called combinational
circuits. All of the circuits that we studied in Chapter 2 are combinational circuits, as is the adder circuit
in this chapter. Other circuits, in which the output may depend on past inputs also, are sequential circuits.
Flip-flops are a simple example of sequential circuits. A counter is a more complex example.

When we studied combinational circuits, we examined a systematic technique for designing them: You
take the truth table, which was the specification of the circuit’s design, from there you get a sum-of-products
Boolean expression, which you can minimize and then use to build a circuit.

In this section, we look at a systematic way for designing sequential circuits. It is a four-step process.

1. Draw a state transition diagram outlining how the circuit should change state as it receives inputs. The
number of states will dictate how many flip-flops the circuit must have.

2. Generate a table saying how the flip-flop values should change in each step, based on the flip-flops’
current values and the inputs to the circuit. Also, generate a table relating the flip-flops’ values to the
desired output of the circuit.

3. Derive combinational circuits to compute the inputs to each flip-flop and to compute each circuit
output.

4. Combine these derived circuits together into a sequential circuit.

4.3.1 An example

As an example of this process, suppose we want a circuit using D flip-flops with two inputs and with two
outputs. One of the inputs ��� is a clock; the second,

�
��� , says whether the circuit should count up or down

(1 representing up). The circuit should count up to 2, and it should not display wraparound behavior — that
is, when the circuit is at 0 and

�
��� says to count down, the circuit remains at 0; and when the circuit is at 2

and
�
��� says to count up, the circuit remains at 2.

�
In fact, since the gates aren’t all identically fast, and the wires aren’t all identically long, the changes in latches’ values would

be much more erratic.

4.3 Sequential circuit design (optional) 41

Step one: Drawing a state transition diagram In this case, the circuit should “remember” one of three
things: The counter could be at 0, it could be at 1, or it could be at 2. Based on this, we can draw a picture
of how what it will remember should change.

1 20

1

0 0
10

1

The arrows in this picture represent transitions between states. If, for example, the circuit is at state 0, and
the clock changes while input

�
��� is 1, then the counter’s value should change to 1, and so the circuit should

move to state 1. Thus we see an arrow labeled 1 extending from state 0 to state 1.
Because there are three states, and because two bits can represent three different values, we’ll use two

flip-flops. (Of course, two bits can actually handle up to four different values. We don’t have any use for
that last value here, though.) We name the outputs of the two flip-flops � � and � � , and we create a table
relating flip-flop values to states in the diagram.

state � � � �
0 0 0
1 0 1
2 1 0

Step two: Generating tables Based on our state diagram, we can generate a table of how states should
change based on the current state and the

�
��� input. (We don’t include the clock input: It will simply be

wired to the clock input of each flip-flop.)
�
��� old � � old � � new � � new � �
0 0 0 0 0
0 0 1 0 0
0 1 0 0 1
0 1 1

� �
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1

� �

This table is a direct translation of the state diagram. In the first row, for example,
�
��� , � � , and � � are all

currently 0. The current values of � � and � � indicate that we are in state 0, according to the translation
table determined in the previous step. According to the state transition diagram, if we’re in state � , and

�
���

is 0, then we should move to state 0. Looking again at the translation table from the previous step, we see
that the new values for � � and � � should be 0.

For the second row, the current � � and � � values indicate that we are in state 1. Since this row is for the
case that

�
��� is 0, we look into the state transition diagram for an arrow starting at state 1 and labeled 0, and

we observe that this arrow leads to state 0. The translation table indicates that state 0 is indicated by having
� � and � � both be 0, and so that is what you see in the last two columns of the second row.

The entries marked
�

in this table stand for don’t-care. They occur here because, when � � and � � are 1,
we are in an undefined state, and we don’t care about the circuit’s behavior then. In fact, something would
happen should the circuit ever reach this state, but if we’ve designed it properly, it never will get there. We
don’t commit to a behavior for this undefined state now, because that will maintain our freedom later to
choose whatever behavior keeps the final circuit simplest.

We should also draw a table saying how the circuit’s output relates to the flip-flop’s values. In this case,
we’ve chosen the flip-flop values to correspond exactly to the desired outputs, so this part is easy.

42 Chapter 4. Computational circuits

� � � �
�
�

�
�

0 0 0 0
0 1 0 1
1 0 1 0
1 1

� �

For other problems, the relationship between the flip-flops’ values and the table would be more complex.

Step three: Derive combinational circuits For the third step, we derive combinational circuits for com-
puting the flip-flops’ new values and the outputs. For example, for the second flip-flop’s value (new � �), we
can look at our table and see the following. Note that we’re removing the “new � � ” column from before;
the circuit will compute that column simultaneously, and so we can’t use it in determining “new � � .”�

��� old � � old � � new � �
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1

�
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1

�

Following the procedure of Chapter 2, we can derive a circuit for this table. Our sum-of-products expression
would be �

��� � � � � � � �
�
��� � � � � � � �

� �
��� � � � � � � �

�
��� � � � � � �

This does not simplify, and so we can stop there.
�

(I’ve commuted the two terms to make the circuit diagram
later prettier.)

Computing the expression for “new � � ” proceeds similarly, and we would end up with

�
��� � � � � � � �

�
��� � � � � � � �

Similarly, the expression for �
� would be � � � � , for �

� it would be � � � � .

Step four: Put the circuits together In the final step, we join these circuits based on the previous step
into one overall circuit. Figure 4.2 shows this derived circuit. The top dotted box computes the “new � � ”
expression derived in the previous step. Its output, notice, is looped around back to � � to be stored the next
time ��� changes. Also notice how the circuit inside the dotted box saves unneeded NOT gates by using the
flip-flops’ � outputs when appropriate.

Similarly, the second dotted box computes “new � � ,” the third dotted box computes the output �
� , and

the bottom dotted box computes the output �
� .

4.3.2 Another example

Let’s look at another example. This time, we want a circuit with a single input — the clock — and a single
output. The output should be 1 every fourth time the clock input changes from 0 to 1.

�
If we were to choose the lower � in the table to be a 1, we could simplify the circuit. In this case, we’re not going to worry

about finding the smallest possibility, though.

4.3 Sequential circuit design (optional) 43

o1

o0

Q

Q D D
flip−flop

1
Qfor

Q

Q D D
flip−flop

Q
0

for

dir

ck

Figure 4.2: A sequential circuit counting up and down between 0 and 2.

Step one: Drawing a state transition diagram In this case, the circuit should “remember” one of four
things: The current output could be at 1, it could be at 0 on the first clock pulse, it could be at 0 on the
second clock pulse, or it could be at 0 on the third clock pulse. Based on this, we can draw a picture of how
what it will remember should change.

3

0

1

2

This diagram illustrates that the circuit should cycle through the four states each time the clock changes.
In contrast to the last circuit we designed, which had an input other than the clock which affected how the
circuit was to modify its state, this circuit has no inputs other than the clock. Thus, the state transition
diagram for this circuit doesn’t need labels on the arrows between states.

Because there are four states, we’ll use two flip-flops. We name the outputs of the two flip-flops � � and
� � , and we create a table relating flip-flop values to states in the diagram.

state � � � �
0 0 0
1 0 1
2 1 0
3 1 1

Step two: Generating tables This problem specifies no circuit inputs other than the clock input, and so
the only columns on the left side of our table are the current flip-flops’ values. Based on our state diagram,

44 Chapter 4. Computational circuits

Q

Q D D
flip−flop

1
Qfor

Q

Q D D
flip−flop

Q
0

for

ck

o

Figure 4.3: A sequential circuit whose value is 1 every fourth clock pulse.

we can generate a table of how states should change based on the current state.

old � � old � � new � � new � �
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

The table for the circuit’s output corresponds to the desired output for each state.

� � � �
�

0 0 1
0 1 0
1 0 0
1 1 0

Step three: Derive combinational circuits Based on the tables from the previous steps, we derive
Boolean expressions for the flip-flops’ new values and for the circuit’s output.

new � �
� � � � � � � � � �

new � �
� � � � � � � � � �

� � �
� � � � � �

Note that the expression for the new � � simplified.

Step four: Put the circuits together Figure 4.3 shows the derived circuit.

Chapter 5

Computer architecture

Thus far, we’ve seen how to build circuits to perform simple computation. A computer, however, is a much
more complex device. In this chapter, we’ll examine the level on which computers operate programs, and
we’ll get some feel for how this can be done via circuits.

5.1 Machine design

To work with a concrete computer design, we’ll examine a computer called HYMN, a simple design invented
for teaching purposes. � The name stands for HYpothetical MachiNe. (While studying a “real” industrial-
strength computer sounds nice at first, the added complexity interferes with understanding the essential
concepts.)

5.1.1 Overview

Modern computers, including HYMN, include two major parts: the central processing unit, or CPU, and
random access memory, or RAM. The CPU performs the computation, while the RAM stores long-term
information.

central
processing

unit
(CPU)

random
access

memory
(RAM)

bus

A bundle of wires called a bus connects these two pieces. The bus gives the CPU an avenue for communi-
cating with memory to retrieve and store data when needed for computation.

RAM is the simpler of the two pieces: It is simply an array of bytes. Although modern computers have
millions or even trillions of bytes of RAM, the RAM in HYMN holds only 32 bytes.

�
HYMN’s design comes from Noreen Herzfeld’s book Computer Concepts and Applications for Non-Majors (manuscript,

2002).

46 Chapter 5. Computer architecture

central
processing

unit
(CPU)

15 23 317

0
1
2
3
4

8
9
10
11
12

16
17
18
19
20

24
25
26
27
28

5 13
14

21
22

29
306

bus

RAM

Since each byte has 8 bits, and we can use a D flip-flop to remember each bit of RAM, we could build this
RAM using � � � � � � � � D flip-flops.

Each byte of RAM has a number for describing it, called its address; when the CPU wants to retrieve
data from RAM, it sends the address of the desired byte on the bus. Sometimes, when talking about memory,
we’ll use notation such as “M

� ���
,” which represents the byte whose address is 7 (at the bottom of the RAM’s

leftmost column in the picture).
In most modern computers, the CPU is a single chip including thousands or millions of logic gates. The

CPU’s design can be split into two major pieces, the control unit and the arithmetic logic unit.

15 23 317

0
1
2
3
4

8
9
10
11
12

16
17
18
19
20

24
25
26
27
28

5 13
14

21
22

29
306

RAM

arithmetic
logic unit

unit
control

IR
PC

AC

bus

CPU

The control unit controls the overall structure of the computation performed, while the arithmetic logic
unit (or ALU) is for performing arithmetic and logical operations. For HYMN, the only arithmetic and
logical operations provided by the ALU are addition, subtraction, and identification of whether a number is
positive or zero (or neither). In more sophisticated CPUs, the ALU would also include circuitry for other
arithmetic operations like multiplication and division and for logical operations like AND, OR, and NOT.

As the CPU performs its task, it will remember data. Each location on the CPU for storing a piece of
data is called a register. HYMN’s design calls for three registers.

The accumulator (abbreviated AC) holds temporary data being used for computation.

The program counter (abbreviated PC) tracks the address of the instruction to execute next.

The instruction register (abbreviated IR) holds the current instruction being executed.

You can think of the registers as the computer’s “short-term memory” and RAM as its “long-term memory.”

5.1.2 Instruction set

Each instruction in the program will be encoded as a value in RAM. In HYMN’s design, each instruction is
eight bits long, including three bits describing the instruction code (the op code — op is short for operation)
and five bits containing additional data for the instruction.

op code

3 bits 5 bits

data

5.1 Machine design 47

code op behavior
000 HALT nothing further happens (computer halts)
001 JUMP PC �

��� � �
010 JZER if AC � � then PC �

��� � �
else PC � PC �
�

011 JPOS if AC � � then PC �
��� � �

else PC � PC �
�
100 LOAD AC � M

� ��� � � �
; PC � PC �
�

101 STORE M
� ��� � � �

� AC; PC � PC �
�
110 ADD AC � AC � M

� ��� � � �
; PC � PC � �

111 SUB AC � AC 	 M
� ��� � � �

; PC � PC � �

Figure 5.1: The HYMN instruction set.

The op code designates one of HYMN’s eight possible instruction types, which are tabulated with their
behaviors in Figure 5.1.

For example, suppose our HYMN computer were running with the following values in registers and
memory. (All values are written in hexadecimal.)

arithmetic
logic unit

unit
control

IR
PC

AC

7

0
1
2
3
4
5
6

RAM

15

8
9
10
11
12
13
14

23

16
17
18
19
20
21
22

31

24
25
26
27
28
29
30

00

85
C5
C5
A6
00
07
00

00
00
00
00

0A
0A
01
00

00
00
00
00

00
00
00
00

00
00
00
00
00
00
00
00

bus

CPU

C5
02

0E

The current instruction the computer wants to execute is normally in the IR; at this point, IR holds C5 � � � � ,
or 11000101 � ��� . To execute this instruction, the control unit would first divide the instruction into its two
pieces.

01
op code data

1 0 1010

It interprets the first three bits, 110, as being the operation’s code; based on the row labeled 110 in Figure 5.1,
we see that we’re looking at an ADD instruction.

110 ADD AC � AC � M
� ��� � � �

; PC � PC �
�
This says that the computer should do two things to perform this operation.

AC � AC � M
� ��� � � �

: The computer computes AC � M
� ��� � � �

and places the result into AC. To compute
the value, it looks first at the last five bits of the instruction to determine

��� � �
; in this case, the last

five bits give the number 00101 � ��� � 5 � ����� . Then, it determines M
� ��� � � �

by looking in memory at
address 5; the memory currently contains 07 � � � � . Finally, it adds this value (07 � � � �) to the current
value in AC (that is, 0E � � � �), to arrive at the result 15 � � � � . The computer places this value into AC.

PC � PC � � : The computer takes the current value of PC (that is, 02 � � � �) and adds 1. It places the result,
03 � � � � , into PC.

Thus, after completing the instruction, the computer holds the following data instead. (The only values that
have changed are those in AC and PC.)

48 Chapter 5. Computer architecture

arithmetic
logic unit

unit
control

IR
PC

AC

7

0
1
2
3
4
5
6

RAM

15

8
9
10
11
12
13
14

23

16
17
18
19
20
21
22

31

24
25
26
27
28
29
30

00

85
C5
C5
A6
00
07
00

00
00
00
00

0A
0A
01
00

00
00
00
00

00
00
00
00

00
00
00
00
00
00
00
00

bus

CPU

C5
03

15

5.1.3 The fetch-execute cycle

Computers incorporate a clock for sending signals to the CPU telling it when to move forward in its com-
putation. The clock’s job is to simply emit a signal oscillating between 0 and 1.

0

1

Each oscillation, from 0 to 1 and back to 0, is called a pulse. CPU specifications often include a measure of
how fast this clock can go: A 3GHz (three gigahertz) computer, for example, contains a CPU that will work
as long as the clock doesn’t go faster than three billion (giga-) pulses a second. �

Doing a single instruction is a two-step process, called the fetch-execute cycle. First, the computer
fetches the next instruction to execute. Then, the computer executes this instruction. Through repeating this
process ad infinitum, the computer completes its execution.

For HYMN, the PC register is for holding the address of the next instruction to execute, and the IR is
for holding the current instruction. Thus, during the fetch process, the HYMN CPU will take the contents
of PC, send it to RAM via the bus, and the CPU will take RAM’s response and place it into the IR.

The execute process involves taking the current value stored in the IR (which was placed there in the
preceding fetch), determining that instruction’s op code by examining its first three bits, and performing the
action as specified in the corresponding row of Figure 5.1.

5.1.4 A simple program

When we want to run a program, we put the program into RAM before starting the CPU. For example, we
might place the following into the memory and then start the CPU.

addr value op data
0 10000101 � ��� (85 � � � �) LOAD 5
1 11000101 � ��� (C5 � � � �) ADD 5
2 11000101 � ��� (C5 � � � �) ADD 5
3 10100110 � ��� (A6 � � � �) STORE 6
4 00000000 � ��� (00 � � � �) HALT —
5 00001100 � ��� (07 � � � �) 7 —
6 00000000 � ��� (00 � � � �) 0 —

�
There are several factors that play into this speed limitation. One is that electrical signals take time, and a too-fast clock

could demand that the computer use information before the computation prompted by the previous pulse has had time to propagate
through the circuit, in which case the circuit would use wrong information. Another factor is that a faster clock pushes the gates to
work faster; if the gates perform too much computation, they can literally overheat and burn the CPU. Computers with fast clocks
often have elaborate cooling systems to prevent overheating.

5.2 Machine language features 49

The following table represents what happens as the computer begins running. Each row represents the
contents of the registers (written in hexademical) at the beginning of a clock pulse, in which the computer
performs either the fetch or execute process.
PC IR AC action

00 00 00 The computer automatically starts with zero in each of its registers.
00 85 00 Fetch: CPU fetches the memory at address PC � � into IR.
01 85 07 Execute LOAD: CPU fetches the memory at address

� � � � � � into AC and places PC � �
into PC.

01 C5 00 Fetch: CPU fetches the memory at address PC � � into IR.
02 C5 0E Execute ADD: CPU adds the memory at address

��� � � � � into AC and places PC � � into
PC.

02 C5 0E Fetch: CPU fetches the memory at address PC � � into IR.
03 C5 15 Execute ADD: CPU adds the memory at address

��� � � � � into AC and places PC � � into
PC.

03 A6 15 Fetch: CPU fetches the memory at address PC � � into IR.
04 A6 15 Execute STORE: CPU stores AC � 15 � � � � into memory at address

��� � � � � and places
PC �
� into PC.

04 00 15 Fetch: CPU fetches the memory at address PC � � into IR.
04 00 15 Execute HALT: CPU does nothing.
04 00 15 Fetch: CPU fetches the memory at address PC � � into IR.
04 00 15 Execute HALT: CPU does nothing.

... The computer continues fetching the same HALT instruction and doing nothing. It has stopped
performing useful computation.

What the computer has accomplished here is to take the number at M
�
�
�
, add M

�
�
�

to it, and add M
�
�
�

again,
placing the result into M

� � � . Since we had
�

at M
�
�
�
, the program placed 21 � ����� � 15 � � � � into M

� � � before
it halted.

5.2 Machine language features

So far, we have seen how the computer executes a straightforward program. In this section we’ll consider
more complex programming features that enable us to build more sophisticated programs with HYMN.

5.2.1 Input and output

While our program to place three times the contents of memory at address 5 into memory at address 6 is
nice, it would be even better if could have a program that interacts with the user. To accomplish this, we’ll
modify HYMN’s structure to include two new components — a keypad and a display — attached to the bus.

central
processing

unit
(CPU)

random access
memory (RAM)

display

 addr 30 addr 31 addr 0-29

bus

keypad

We dedicate a memory address to each of these devices: The keypad gets address 30, and the display gets
address 31. RAM will not respond to these addresses.

50 Chapter 5. Computer architecture

When the CPU sends a request to load information from address 30 onto the bus, RAM doesn’t respond.
Instead, the keypad waits until the user types a number, and it sends that number to the CPU via the bus as
its response. Similarly, when the CPU sends a request to store a number to address 31, the display handles
the request (by showing the number on the screen).

The following program reads a number � from the user and displays � � on the screen.

addr value op data
0 10011110 � ��� (9E � � � �) LOAD 30
1 10100110 � ��� (A6 � � � �) STORE 6
2 11000110 � ��� (C6 � � � �) ADD 6
3 11000110 � ��� (C6 � � � �) ADD 6
4 10111111 � ��� (BF � � � �) STORE 31
5 00000000 � ��� (00 � � � �) HALT —
6 00000000 � ��� (00 � � � �) 0 —

It works by loading into AC a number the user types on the keypad (instruction 0), then storing this number in
M

� � � (instruction 1). Then it adds M
� � � to the accumulator twice (instructions 2 and 3); now AC holds � � . It

stores AC in M
� � � � (instruction 4) which effectively displays � � on the screen, before halting (instruction 5).

5.2.2 Loops

HYMN includes three instructions that are useful for writing programs to perform a process repeatedly:
JUMP, JPOS, and JZER. The JUMP instruction works by placing the

� � � �
of the instruction into the PC;

thus, in the next fetch-execute cycle, the computer will fetch and then execute the instruction at the address
given in the JUMP instruction. The effect of this is that the computer jumps to the instruction mentioned in
the

��� � �
of the JUMP instruction, rather than merely continuing to the next instruction as with the LOAD,

STORE, and ADD instructions.
The JPOS (“jump if positive”) and JZER (“jump if zero”) instructions are similar, except that for these

the CPU will copy
��� � �

into PC only if the AC holds a positive number (for JPOS) or zero (for JZER).
Otherwise, the CPU will increment PC so that the next instruction executes.

The following program, which uses the JPOS instruction, displays the numbers from 10 down to 1.

addr value op data
0 10011110 � ��� (9E � � � �) LOAD 6
1 10111111 � ��� (BF � � � �) STORE 31
2 11100101 � ��� (E5 � � � �) SUB 5
3 01100001 � ��� (61 � � � �) JPOS 1
4 00000000 � ��� (00 � � � �) HALT —
5 00000001 � ��� (01 � � � �) 1 —
6 00001010 � ��� (0A � � � �) 10 —

To understand this program, let’s trace through the process of HYMN executing it.
PC IR AC action

00 00 00 The computer starts with zero in each register.
00 9E 00 Fetch: CPU fetches the memory at address PC � � into IR.
01 9E 0A Execute LOAD: CPU fetches the memory at address

� � � � � � into AC and places PC � �
into PC.

01 BF 0A Fetch: CPU fetches the memory at address PC � � into IR.

5.3 Assembly language 51

02 BF 0A Execute STORE: CPU sends AC � A � � � � to address 31 � ����� and places PC � � into PC.
Since address 31 � ����� refers to the display, the display shows the decimal representation of
A � � � � � 10 � ����� .

02 E5 0A Fetch: CPU fetches the memory at address PC � � into IR.
03 E5 09 Execute SUB: CPU subtracts the memory at address

� � � � � � from AC and places PC � �
into PC.

03 61 09 Fetch: CPU fetches the memory at address PC � � into IR.
01 61 09 Execute JPOS: Since AC is positive, CPU changes PC to

��� � � � � .
01 BF 09 Fetch: CPU fetches the memory at address PC � � into IR.
02 BF 09 Execute STORE: CPU sends AC � 9 � � � � to address 31 � ����� and places PC �
� into PC. Since

address 31 � ����� refers to the display, the display shows 9.
02 E5 09 Fetch: CPU fetches the memory at address PC � � into IR.
03 E5 08 Execute SUB: CPU subtracts the memory at address

� � � � � � from AC and places PC � �
into PC.

03 61 08 Fetch: CPU fetches the memory at address PC � � into IR.
01 61 08 Execute JPOS: Since AC is positive, CPU changes PC to

��� � � � � .
... The computer continues repeating the instructions at addresses 1 through 3. Eventually, the

CPU sends � to the display.
02 BF 01 Execute STORE: CPU sends AC � 1 � � � � to address 31 � ����� and places PC �
� into PC. Since

address 31 � ����� refers to the display, the display shows 1.
02 E5 01 Fetch: CPU fetches the memory at address PC � � into IR.
03 E5 00 Execute SUB: CPU subtracts the memory at address

� � � � � � from AC and places PC � �
into PC.

03 61 00 Fetch: CPU fetches the memory at address PC � � into IR.
04 61 00 Execute JPOS: Since AC is not positive, CPU changes PC to PC � � .
04 00 00 Fetch: CPU fetches the memory at address PC � � into IR.
04 00 00 Execute HALT: CPU does nothing. It will continue fetching the same HALT instruction and

doing nothing until the power is turned off.
Notice that the computer doesn’t actualy go to another instruction in a JUMP, JPOS, or JZER. The in-
structions simply change the contents of the PC register, similarly to how a LOAD instruction changes the
contents of the AC register. The actual “jump” occurs as a side effect of the fact that, in the next fetch phase,
the computer fetches the next instruction to execute from the address just stored by the JUMP instruction
into PC.

5.3 Assembly language

The representation of a program as a sequence of instructions written in the machine’s encoding system
is called machine language. Because the instructions’ binary encoding is so foreign for humans, writing
programs in machine language is laborious and difficult for programmers to manage. Thus, people prefer
to write programs in assembly language, which uses mnemonic codes to describe the instructions. Then
they can use a program called an assembler, which translates the mnemonic codes into the corresponding
machine code.

5.3.1 Instruction mnemonics

A simple assembly language designed for HYMN allows us to write the name of an operation followed by a
base-10 number to give the

��� � �
. For a HALT instruction, for which

��� � �
is irrelevant, we omit the number.

52 Chapter 5. Computer architecture

Here is an example of a complete program written in HYMN’s assembly language.
LOAD 6
STORE 31 # address 1: display AC on screen
SUB 5
JPOS 1
HALT
1 # address 5
10 # address 6

When the assembler sees a sharp (‘#’), it ignores it and any characters after it in the same line. This is a
comment; it is useless to the computer, but it can be useful for any human readers of the program.

The last two lines of this program illustrate an alternative way in this assembly language for describing
what should go into memory: You can simply write the base-10 value that you want to place in memory.

5.3.2 Labels

Putting memory addresses directly in the program, as in the 6 of “LOAD 6,” forces us to waste a lot of time
counting lines in the assembly program. Worse, if we decide to add or remove a line from the program, we
end up having to change many instructions’ data.

To alleviate this pain, our assembly language allows us to “name” a byte with a label. To do this, we
begin a line with the label’s name, followed by a colon. This label, then, refers to the address of the data
given within the line. In instructions where we want to refer to a memory address, then, we can instead write
the line’s name.

LOAD start
again: STORE 31 # display AC on screen

SUB one
JPOS again
HALT

(The assembler ignores blank lines like this.)
one: 1 # address 5
start: 10 # address 6

The assembler, when it translates this file, goes through a two-step process. First, it determines to which
address each label refers. Then, it translates each individual line, substituting for each label the address to
which it corresponds. Note that we can use labels for instructions (as “again” labels the “STORE 31”
line) or for data (as “one” labels the “1” line). In general, HYMN doesn’t distinguish between instructions
and numbers — it simply treats data as instructions in some situations (such as the data in IR) and as numbers
in other situations (such as the data in AC)

(The above assembly language program mixes capital and lower-case letters. The HYMN assembler
actually treats lower-case letters and their capital equivalents identically. Thus, we could write this same
program in all lower-case letters, all capital letters, or any mix we like.)

5.3.3 Pseudo-operations

Assemblers also often define pseudo-ops, which appear to be separate instructions in the machine language,
but they actually translate to existing instructions. The HYMN assembler defines two of these: “READ”
stands for “LOAD 30,” and “WRITE” stands for “STORE 31.” Thus, we could write our earlier program to
read a number � and print � � as follows.

READ # reads from the keypad into AC
STORE n
ADD n
ADD n
WRITE # displays the contents of AC on screen
HALT

n: 0

5.4 Designing assembly programs 53

5.4 Designing assembly programs

Writing large assembly language programs is confusing: Keeping track of register contents and understand-
ing the flow of control through all the jumps can be a nightmare. To alleviate the confusion, designers of
assembly language programs use pseudocode to help understand a program’s process for solving a problem.

5.4.1 Pseudocode definition

Pseudocode is an informal, formatted mixture of English and mathematics written to describe a computa-
tional process. Suppose, for example, that I want to describe the process of reading some number � from
the user and then printing the sum of the integers up to � (i.e., � � � ��� � � � �). The following is one way
of writing pseudocode expressing a process for accomplishing this.

1. Read a number from the user, which we’ll call � .
2. Initialize � �
� to 0.
3. Initialize � to 1.
4. Repeat the following while ��� � :

a. Increase � �
� by � .
b. Increment � .

5. Display � ��� to the user.
6. Stop.

This is just one way of writing pseudocode, though. We could equally as well write the following to ex-
press the same process. (It happens that this book’s pseudocode will look more like the following than the
preceding example.)

Read � .
Initialize � �
� to 0.
Initialize � to 1.
while ��� � , do:

Increase � ��� by � .
Increment � .

end while
Write � �
� .
Stop.

The important thing is that we’re writing a step-by-step process for accomplish the desired task, with a
different line representing each discrete step. But we’re not worrying about the details of how to translate
this to assembly language — we only want to describe the general process. Notice that the pseudocode does
not refer to HYMN instructions, registers, or labels.

Pseudocode helps in trying to understand conceptually how to solve the problem. Assembly language
designers, then, can follow three steps to develop their programs.

1. Develop pseudocode describing the procedure used.

2. Test the procedure by running through the pseudocode on paper.

3. Translate the pseudocode line by line into assembly language.

The second of these steps — testing the procedure — involves some mental calculation on some simple
examples. We might, for our example, suppose that the user starts the program and types 5. What values
would the variables take on as the pseudocode executes?

54 Chapter 5. Computer architecture

� 5
� �
� 0 1 3 6 10 15
� 1 2 3 4 5 6

It would cease repeating the middle steps at this point, since it’s no longer true that � � � . Thus, the
pseudocode would continue down to displaying � ��� , which is 15. This is indeed the correct answer here
(� � � � � � � � � � � �).

One test is never enough to conclude anything, though. A good programmer would try something else.
Often, it happens that a program is wrong for very small inputs. So let’s suppose the user runs the program
and types 1. Then what happens?

� 5
� �
� 0 1
� 1 2

Now it would display � ��� � � , which is indeed the sum of the numbers from 1 to 1.
Once we have our overall design down, we can proceed to a line-by-line translation, in which we take

each line independently and create a translation of that line alone. The following diagram illustrates the
process.

Initialize i to 1.

Read n.
Initialize sum to 0.

while i < n, do:
Increase sum by i.
Increment i.

Write sum.
end while

Stop.

n:
sum:
i:
v0:
v1:

READ
STORE n
LOAD v0
STORE sum
LOAD v1
STORE i

SUB n
JPOS done
LOAD sum
ADD i
STORE sum
LOAD i
ADD v1
STORE i

WRITE
HALT

while:

done: LOAD sum

LOAD i

JUMP while

0
0
0
0
1

Each line translates to a handful of assembly language instructions. Most translations are straightforward.
The only non-obvious part of this translation is translating the line “while � � � , do:”. This expresses

that we want to repeat the steps inside several times, and so at the bottom, it will be necessary to jump back
to the beginning. Thus we begin the translation with a while label, and at the end (for “end while”) we
place a “JUMP while” instruction. We place a done label on the line immediately following; we want to
jump there when it’s no longer the case that � � � — that is, we want to jump to done when � � � . To test
whether � � � , we can test instead whether � 	 � � � . (You can see that this is equivalent by subtracting

� from both sides of � � � .) Thus, at the top, before we go into the steps after the “do:”, we see assembly
code for computing � 	 � in the accumulator, and then a JPOS instruction saying to jump to done if the
result is positive.

As we perform this translation, we worry about translating each line alone, without worrying about the
other lines. If the pseudocode is correct, then this will give us a correct program. Writing pseudocode allows

5.4 Designing assembly programs 55

us to worry about the overall design issues first, and then the translation into assembly language should be a
straightforward task.

5.4.2 Pseudocode examples

Learning to write pseudocode is a skill that requires looking at more than one example. In this section,
we look at several more. As you read through these examples, try stepping through them with some small
numbers to verify that they are correct (and that you understand them).

Even though this pseudocode follows a strict system (which we’ll examine later), remember that such
a systematic technique is not important to the pseudocode concept. The most important thing is to take the
problem and separate it into discrete steps, each written in English on a different line.

Printing up to � Suppose we want to read a number � and print the integers counting up to � .

Read � .
Initialize � to 1.
while ��� � , do:

Write � .
Increment � .

end while
Stop.

Computing � � Suppose we want to read a number � and print � � .

Read � .
Initialize � ��� � � to � .
repeat � times:

Double � ��� � � .
end repeat
Write � ��� � � .
Stop.

Multiplication Suppose we want to read two integers � and � and print their product, � � � .

Read � .
Read � .
Initialize � �
� to 0.
repeat � times:

Increase � ��� by � .
end repeat
Print � �
� .
Stop.

Fibonacci sequence Suppose we want to read an integer � and print the first � numbers in Fibonacci
sequence. The Fibonacci sequence, �

���	��� � � � � � � � �	� � � � � � � �
begins with two 1’s, and each successive number is the sum of the preceding two numbers (e.g., � � � ��� �).

56 Chapter 5. Computer architecture

Read � .
Initialize � to � .
Write � .
Initialize � to � .
repeat � 	 � times:

if � � � , then:
Write � .
Increase � by � .

else:
Write � .
Increase � by � .

end if
end repeat
Stop.

5.4.3 Systematic pseudocode

In general, pseudocode will be composed of three different constructs.

Imperative statements are English descriptions of single things to do. Frequently, the imperative state-
ment will involve changing the value associated with a variable, as in “Read � ” or “Double � ��� � � .”
Imperative statements in pseudocode generally should not involve doing something several times.
(“Let � �
� be the sum of the integers from � to � ,” should not appear in pseudocode, for example.)

Conditional statements say to do a sequence of steps only in particular conditions. In the pseudocode
examples in the preceding section, this was represented by the if. . . then construct in the final example.

if � � � , then:
...

else:
...

end if

construct of the final example. This indicated to do the steps following then in one case (when � � �),
and to do the steps following else in others (i.e., when � � �).

Repetition statements say to perform some sequence of steps repeatedly. The pseudocode examples we’ve
seen include two types of such constructs.

while � � � , do: repeat � � � times:
...

...
end while end repeat

You can write good pseudocode for any task based on these three categories of constructs.
Once you’ve written and tested your pseudocode, you can mechanically translate it into a HYMN pro-

gram. But you may be wondering: If this translation is so mechanical, then why not have the computer do it
for us?

5.5 Features of real computers (optional) 57

program SumConsecutive;

var
Sum, I, N : integer;

begin
readln(N);
Sum := 0;
I := 0;
while I <= N do
begin

Sum := Sum + I;
I := I + 1

end;
writeln(Sum)

end.

#include <stdio.h>

int main() {
int n, sum, i;

scanf("%d", &n);
sum = 0;
i = 0;
while(i <= n) {

sum = sum + i;
i = i + 1;

}
printf("%d\n", sum);
return 0;

}

(a) Pascal (b) C

Figure 5.2: Example programs in high-level languages.

This is, in fact, the idea behind high-level languages, also called programming languages. Some
popular programming languages include C, C++, and Java. These languages are basically dialects of pseu-
docode that have been defined narrowly enough that a computer can break it into pieces. Figure 5.2 gives
some example programs written in two well-known high-level programming language, Pascal and C. You
can see that they are more similar to pseudocode than they are to the assembly language translation.

A computer program called a compiler will read a program written in the high-level language and trans-
lates it into an assembly language program. The compiled program can then run on the computer. Compilers
are complex programs, but they work very well in their translation, often generating better assembly lan-
guage programs than humans can manage.

5.5 Features of real computers (optional)

While HYMN incorporates most of the concepts in computer design, it does skip over a few additional
concepts. In this section, we examine a few of the major differences between HYMN and real computers.

5.5.1 Size

Typical computers are much bigger than HYMN in at least three ways. First, and most significantly, they
have more RAM. HYMN allows only 32 bytes of RAM. This is a major limitation on the size of programs
we can write and the amount of data the computer can remember. Computers found in the real world tend
to have many megabytes (MB) or even gigabytes (GB) of RAM.

A second way in which a real computer is bigger is in the size of the instruction set. HYMN has only
8 types of instructions. Actual computers tend to have between 50 and 200 instruction types. These instruc-
tions allow the computer to incorporate a variety of useful arithmetic and logical operations, to compute
with several data types (such as various integer lengths (16, 32, and 64 bits) and floating-point lengths), and
to provide features useful for operating systems design.

58 Chapter 5. Computer architecture

READ # Read which prime to access from user.
ADD primes_addr # Computer memory address to access.
LOAD_AC # Load from that address. (LOAD_AC is not in HYMN.)
WRITE # And display that data.
HALT

primes: 2
3
5
7
11
13

primes_addr: primes

Figure 5.3: A pseudo-HYMN program illustrating an array.

Finally, while HYMN incorporates only three registers, a real computer would use many more registers.
An Intel Pentium chip, which has fewer registers than most, has eight registers for holding 32-bit integers
(each analogous to HYMN’s accumulator), eight registers for 80-bit floating-point numbers, and many oth-
ers for specific purposes (including one analogous to HYMN’s PC and other internal registers analogous to
HYMN’s IR).

5.5.2 Accessing memory

HYMN’s architecture incorporates a memory address into each LOAD, STORE, ADD, and SUB instruc-
tions. Real computers also provide the capability of accessing memory based on a register’s value, called
indirect addressing.

This capability is useful when you want a list (called an array) of several pieces of data in adjacent
memory locations. The program might ask the user which number to access in the list, and the number the
user types would go into a register. Based on this, the program can compute the address of the memory
slot containing the data, placing the result into a register. Using indirect addressing, the program can access
data.

As an example of how this might work, we can suppose there were a LOAD AC instruction.

LOAD AC AC � M
�
AC

�
; PC � PC � �

Figure 5.3 contains a program that uses this hypothetical instruction. The program reads a number � from
the user and displays the � th item of a list of prime numbers contained in memory.

5.5.3 Computed jumps

A similar thing happens with HYMN’s JUMP, JPOS, and JZER instructions: The address to which to jump
is incorporated directly in the instruction. Real computers also include the capability to jump based on a
register’s value.

This concept is useful for a subroutine, which is a piece of code designed to be used from other locations
in a program. Suppose there is a particular type of computation that is useful in many places in the program;
for example, computers rarely have an instruction to raise a integer to a power. Rather than duplicating
the code for exponentiation several times within a program, a programmer can write a single exponentation
subroutine and simply call the subroutine to make it happen.

To see how we might do this through HYMN, suppose that we have a program that includes a subroutine.
Before the program JUMPs into the subroutine, it must first store the address of the instruction following

5.5 Features of real computers (optional) 59

READ # Read m and n from user, storing them where
STORE exp_m # exp subroutine expects.
READ
STORE exp_n
LOAD_PC # Load where to go after finishing subroutine
JUMP exp # Now jump into the exp subroutine.
LOAD exp_val # The exp subroutine will jump here when done.
WRITE
HALT

exp: STORE exp_ret # Store return address for safekeeping
(Subroutine code omitted. It would compute exp_m to the
(exp_n)th power and place the result into exp_val)

LOAD exp_ret
JUMP_AC # (JUMP_AC is not in the HYMN definition.)

exp_m: 0
exp_n: 0
exp_val: 0
exp_ret: 0

Figure 5.4: A pseudo-HYMN program illustrating a subroutine.

the JUMP into some location, perhaps the AC. When we JUMP into the subroutine, it can perform its com-
putation and, once it has completed, it can copy the AC value back into PC to return back to the instruction
following the JUMP. To construct at a program illustrating this, we need two new instructions in HYMN’s
instruction set.

LOAD PC AC � PC � � ; PC � PC � �
JUMP AC PC � AC

Figure 5.4 contains a program using these hypothetical instructions to illustrate how a subroutine might be
called.

60 Chapter 5. Computer architecture

Chapter 6

The operating system

Computers typically use a special piece of software called an operating system; the most popular operating
systems for personal computers today are MacOS, Microsoft Windows, and Linux. In this chapter, we’ll
survey what this software does and how it accomplishes its tasks.

6.1 Disk technology

Before we explore operating systems, we need to look a little more carefully at the hardware in today’s
computers. In HYMN, we’ve already gotten an idea of the two most important components of today’s
computers — the CPU and the RAM — and how these work. Computers systems can have many other
components, though, including such devices as display screens, keyboards, mice, speakers, hard disks,
and CD-ROM drives. These devices are called peripherals because they are secondary to the primary
components (the CPU and the RAM).

Among the peripherals, only one close to being vital to the modern computer’s operation: the hard disk.
We’ll look briefly at how hard disks work before continuing.

The hard disk is similar to RAM in its function: It stores data. But it has some important differences.
Most notable is the fact that data stored on the hard disk persists even when the power is turned off. But,
also, the hard disk is also much cheaper. The primary reason computers don’t use it exclusively is because
the technology is also much slower.

The technology underlying hard disks is significantly different from that of RAM. Hard disks include
one or more platters of magnetic material, and each bit is stored in a particular tiny region of the disk, based
on the current polarization of the magnetic charge within that region. The magnetic charge does not require
any current to maintain its polarization, and this accounts for why data on the disk lasts for long periods
without power.

For reading or writing the charge at a location at a disk, the disk has an arm which can move toward or
away from the platter. With the platters rotating, and the arm moving to and from the center of the platter,
the arm can access any position on the platter. At the end of the arm is the head, which has the ability to
detect or change the magnetic charge at the point underneath it.

Figure 6.1 illustrates the internals of a hard disk. This is what you would see if you were to open up the
box in which it is encased. (Normally, the disk is encased in a steel box, tightly sealed to prevent dust from
getting in and interfering with the head and scratching the disk.) This particular disk has only one platter,
with a head for each side. Disks frequently have two, three, or even more platters.

Disks tend to be slow. This is surprising when you consider that a high-quality disk revolves up to
15,000 times a minute. But then we perform a calculation of how long it would take. On average, the arm

62 Chapter 6. The operating system

headarm
platter

(a) (b)

Figure 6.1: The internals of a hard disk. (This particular hard disk has only one platter.)

must wait for ����� a revolution before the desired data comes around to be under it.

����� rev �
min

� � � � � � rev
�
� � s
min

� ��� � � � ms
s

� � ms

That time — � ms — may not sound like much, but you need to remember that the clocks on computers
often run 2 billion pulses a second (2GHz) or faster. If the computer can complete an instruction every
pulse — and most computers can —, this means 2 billion instructions a second. In those � ms it takes to
load data from the disk, the computer can complete 4 million instructions. (By contrast, RAM tends to take
nanoseconds to access. It’s still slow relative to the CPU, but it only takes a few dozen instructions.)

To reduce the penalty of the time delay, disks usually read and write blocks of data, called, appropriately
enough, blocks. Thus, the � ms delay is for reading a full block. (The bytes are packed so densely on the
disk that waiting for the disk to rotate through the whole block is relatively fast.) In a typical disk, a block
might hold 4 kilobytes.

6.2 Operating system definition

The operating system manages the computer’s resources for the benefit of programs running on the com-
puter.

6.2.1 Virtual machines

The operating system acts as a virtual machine for programs, giving designers of other programs the illusion
that using the computer for display, input, file access, printing, etc., is much easier than it really is. While
the operating system must worry about issues like where exactly bytes are distributed on a disk, for example,
the programmer of other software can imagine a file as simply a sequence of bytes.

There are several virtual machines in a modern computing system, arranged in layers as in Figure 6.2.
Without such layers of abstraction, designing a large computer system would be like designing a ship by
listing how each individual board is cut and joined.

Above the operating system in Figure 6.2 is another virtual machine, represented by the programming
language. The language is usually designed to work across a variety of operating systems, so that a single
program written in the language will work with other systems. They also often provide the illusion of
new capabilities; for example, some programming languages make it seem that the computer has a built-in

6.2 Operating system definition 63

User programs
Programming language

Operating system
CPU instruction set
Logic gate layout

Figure 6.2: Layers of abstraction in a computer system.

capacity for exponentiating numbers, but many operating systems and instruction sets do not have such an
operation.

Below the operating system is the CPU’s instruction set. This, too, is a virtual machine, which allows
designers to write an operating system without worrying about how the CPU’s gates are actually arranged.

6.2.2 Benefits

The operating system, then, serves primarily as an intermediary between the programs and the computer
hardware. As an intermediary, it provides three major benefits.

It abstracts complex computer resources. For example, when most programs want to store something on
the disk, they want to be able to work with a sequence of bytes called a file. Each file has a distinct
name, and different files can have different lengths. However, the disk inside a computer (on which
files are stored) is a simple device that is not sophisticated enough to handle the concept of a file;
all that a disk can do is to read and write fixed-size blocks of data to particular locations identified
by number. The operating system creates the file abstraction to simplify access to the disk for other
programs.

Another important abstraction is the window seen in graphical user interfaces. The window has no
basis in computer display technology; the only way to draw something on the screen is to tell it how
to color individual pixels. Allowing individual programs to send such messages to the screen would
lead to chaos in an environment where multiple programs contend to display information to the user.
To work around this, the operating system creates the window abstraction of a rectangular area of the
display, and individual programs can request from the operating system a new window into which
they can draw without any danger of contention with other programs for the same display space.

Other important abstractions include the process abstraction for a running program and the connection
abstraction for network communication.

It provides hardware compatibility. When you first think of operating systems, you’re likely to think that
they cause incompatibility issues. After all, one of the first questions asked about new software or
hardware is, does it work with my operating system? But in fact they reduce incompatibility prob-
lems: We don’t recognize this because they reduce compatibility problems in the realm of computer
hardware so effectively.

As an example of the hardware compatibility issue, consider the many types of disk designs available:
There are many technologies (hard disks, floppy disks, CD-ROMs), and even if you choose just one
technology, manufacturers often build their disks to work with different interfaces, usually to improve
performance for their particular disk. Without an operating system, you would need code in each of
your programs to support each type of disk interface. For each program you acquire, you’d have to
check that it works with the specific disk types your computer has (as well as the same display, the
same network device, the same printer, etc.). And, if you decide to buy a new disk, you would find

64 Chapter 6. The operating system

that it would be compatible with some of your programs (which already contain the relevant code) but
not with others.

The operating system saves us from this chaos. Because each program accesses the disk (and display,
network, printer, etc.) via the abstractions provided by the operating system, it’s only important
that the hardware be compatible with the operating system. Most operating systems provide a way
of extending their hardware facilities through software called a driver, so that manufacturers who
produce new hardware can distribute the necessary driver software along with their hardware. One
can install the driver in the operating system once, and the hardware is immediately compatible with
all of the programs running on the computer.

The operating system protects the overall computer system. While it may sound initially nice to give
each programmer full freedom of access to the computer system, such trust opens a system to catas-
trophes. Among these catastrophes is the possibility that a user might download and run a program
that appears useful or interesting but in fact does something like wipe the disk. (Such a program is
called a trojan horse.) Even in programs written with good intentions, there are often errors (“bugs”)
that a user could accidentally trigger.

To prevent this, the operating system acts as an intermediary between each individual program and
the rest of the system. A program requests something from the operating system using a system call,
and the operating system verifies that the request is acceptable before completing it.

You can think of an operating system as the adult in the computer, parenting the young user programs. An
adult often explains events at the child’s level using metaphors (those are the abstractions) and performs
tasks, like buying a piece of candy, that the child can’t handle on its own.

6.3 Processes

Each instance of a running program is termed a process. Like other abstractions created by the operating
system, processes don’t exist in the hardware; they are a concept created by the operating system to allow it
to work with active programs.

Today’s sophisticated operating systems can have several processes active simultaneously. Often, these
processes are programs that the user initiated (like a mail reader or Web browser), but they can also be
processes that run silently in the background (like a program that archives e-mail sent from other computers).
As I write this on my Linux system, the system is managing 80 active processes.

6.3.1 Context switching

The CPU has one thread of execution — that is, it does only one thing at once. � The OS must provide to
each process the illusion that it “owns” the computer. Thus, the OS will switch processes on and off the
CPU; the amount of time the OS runs before it interrupts a process is called the process’ time slice. The
OS designer will choose the time slice duration to be small enough that a human user can’t distinguish the
difference, but not so small that the OS spends much of its time rotating processes on and off the CPU.

During its life, a process cycles between three states.

�
Actually, today’s CPUs are much more complex than this; they often work on several instructions simultaneously. However,

to keep the overall CPU design simple, most CPUs provide the illusion that the computer does only one instruction at a time. The
operating system, built using the CPU’s instruction set, is grounded on this illusion.

6.3 Processes 65

Running

Blocked

Ready

Running The CPU is currently executing instructions for the process.

Ready The process is prepared for the CPU to execute its instructions, but the CPU is doing something
else.

Blocked The process cannot continue its computation, usually because it is waiting for a hardware device
to send it information. For example, when a process asks to read something from a file, the disk can
take several milliseconds to generate a response. During this time, the process cannot continue, and
so the process is “blocked.” While it is blocked, the computer could execute millions of instructions
for other processes.

Many processes spend most of their time in the Blocked state, often because they are waiting for the user to
give additional input via the mouse or keyboard. While my computer system has over 80 processes active
right now, in fact only a small handful (often, just 1) are in the Ready or Running state.

The OS should be designed so that each program can be written as if it has sole control of the CPU.
One of the most important elements of this is that each program should “own” the CPU’s registers. With the
HYMN architecture, we want to write programs so that a number placed into the accumulator will remain
there until a subsequent instruction in the same program replaces it.

However, when the operating system switches to another program, that other program will have its own
ideas of what should be in the registers. Thus, when the OS moves a process from the Running state to the
Ready or Blocked state, it will have to save the current values in each of the registers to a place in memory.
The OS maintains a process table in its memory to track data like this about each current process. Then,
just before the OS moves a process into the Running state again, the OS can restore the registers stored in
next process’ process table entry. In this way, the next process continues from where it left off with the same
register values that existed when that process moved out of the Running state. This procedure of saving one
process’s context (including its registers) and restoring another is called a context switch.

To illustrate, suppose our computer has two processes, � and � .

1. The computer runs program � for 10 milliseconds. (Ten milliseconds is a reasonable period for
a time slice, based on the fact that humans cannot perceive time differences smaller than around
40 milliseconds. Of course, the latter fact is also why movies have a frame rate of 24 frames a second
(� � � � � ms � � s).)

2. The operating system takes over. It saves the current register values (those that � had placed there)
into � ’s entry of the process table.

3. The operating system restores the register values stored in � ’s entry of the process table.

4. The OS jumps into program � for 10 milliseconds.

5. The operating system takes over again. It saves the register values into � ’s process table entry.

6. The operating system restores the register values from � ’s process table entry.

7. The computer repeats the process.

66 Chapter 6. The operating system

6.3.2 CPU allocation

Because there can be many processes in the Ready state at any time, the computer maintains a ready queue
to track these processes.

queue
ready

CPU

time slice over; back to ready queue

new
processes

The ready queue is where the processes politely line up, waiting for their turn with the CPU. (Technically,
the processes can’t really “do” anything like stand in line when they’re not on the CPU. This is just a way
of talking about how the operating system is managing what it knows about the processes.)

When there are I/O devices, like disks, keyboards, or printers, things get more complicated. (I/O stands
for Input/Output.) With such devices, processes might enter the Blocked state waiting for information from
them. The operating system will maintain an I/O wait queue for each of these devices.

queue
ready

printer queue

disk queue

CPU

time slice over; back to ready queue

 I/O doneI/O requested

new
processes

A process requesting access to a device goes into the device’s I/O wait queue until the device handles the
request.

The example of Figure 6.3 illustrates how this works. Suppose we have a computer system with the
timing assumptions of Figure 6.3(a), and we begin with the four processes of Figure 6.3(b) starting simulta-
neously in the ready queue. Figure 6.3(c) tabulates how the OS would manage these processes. � Note that
it has taken a total of 29 ms for the computer to finish all the processes, with an average completion time of

� �
� � � � �

� � �
� � � � � � � � �
� � � � � � �

� ms

per process.
Now, for the sake of argument, suppose that our system only allows one process at any time, and so we

must run the programs in sequence.

� takes � � � � � � � �
� � � � ms, finishing after � � ms
� takes � � � � � �
� � � � � � � � ms, finishing after � � �
� � � � � ms�

takes � � � ms, finishing after � � � � � � � ms�
takes � � � � � � �

ms, finishing after � � � � � � �
ms

�
There is a slight ambiguity at time 18.0, when both � and � enter the ready queue: The choice of � entering first is arbitrary.

Also, this table neglects several unimportant details; for example, at time 12.0, the OS would have to suspend � while the OS
performs the task of moving � into the ready queue.

6.3 Processes 67

The time slice for a process is 3 ms.
The time to execute a context switch is 0.5 ms.
The printer takes 4 ms to respond to a request.
The disk takes 3 ms to respond to a request.

(a) Timing facts for a computer system.

�
run 2 ms
print
run 1 ms
use disk
run 1 ms

�
run 1 ms
print
run 1 ms
use disk
run 1 ms
print
run 1 ms

�

run 5 ms

�

run 1 ms
use disk
run 5 ms

(b) The details of four processes’ work.

ready disk printer
time CPU queue queue queue comment

0.0 � � � �
(starting configuration)

0.5 � � � � � enters CPU
2.5 � � � � � requests printer
3.0 � � � � � enters CPU
4.0

� � � � � requests printer
4.5

� � � � �
enters CPU

6.5
� � � � � finishes with printer

7.5
� � � � �

’s time slice expires
8.0

� � � � �
enters CPU

9.0 � � � � �
requests disk

9.5 � � � � � enters CPU
10.5

� � � � � requests disk; � finishes printer
11.0

� � � � �
enters CPU

12.0
� � � � �

finishes with disk
13.0 � � � �

ends
13.5 � � � � enters CPU
14.5

� � � � requests disk
15.0

� � � �
enters CPU; � finishes with disk

18.0 � � � �
’s time slice done; � finishes disk

18.5 � � � � enters CPU
19.5

� � � ends
20.0

� � �
enters CPU

22.0 � �
ends

22.5 � � enters CPU
23.5 � � requests printer
27.5 � � finishes with printer
28.0 � � enters CPU
29.0 � ends

(c) A timeline of the OS running the processes. (Queues begin from the left.)

Figure 6.3: An example of OS process management.

68 Chapter 6. The operating system

Thus, without context switching, the computer would take 39 ms to finish all four processes, with an average
completion time of

� � � � � � � � � � �

�
� � � � � � ms

per process. This is significantly slower than the system with context switching, which took 29 ms total,
with an average completion time of 20.975 ms.

It’s a bit weird that in adding the expense of context switching, the time taken to finish all the processes
actually decreases. A good analogy is a cashier in a grocery store. Suppose the cashier started checking out
the next person in line while you were counting up money from your wallet to pay for your groceries. You
may find this irritating, because you know that if the cashier gave you total attention, you wouldn’t have to
wait for the cashier to check out the next person in line. But, overall, this strategy gets people through the
line more quickly, since the cashier is not wasting time waiting for customers to count money.

6.3.3 Memory allocation

As we saw when we examined the HYMN architecture, the two most central elements to the computer
system are the CPU and RAM. In the previous section, we saw how the operating system can manage the
CPU to provide for the possibility of multiple processes. Managing memory is just as important an issue.

Swapping Early operating systems used the simple technique of swapping to provide for multiple pro-
cesses. In this system, the computer treats the contents of RAM as part of the process’ context, which is
swapped along with the register values with each context switch. Of course, the outgoing process’s memory
must be stored somewhere other than RAM, since the RAM is needed for the incoming process’s memory,
and so the operating system stashes the data on disk.

This system, though it works, makes for extremely expensive context switches. In such a system, context
switching involves both copying the current process’s memory from RAM to disk and copying the next
process’s memory from disk to RAM. Because of the access time of milliseconds for disks, and because
processes can have lots of memory, this can add up to a lot of time. Computers that use this simple technique
do so only because the simplicity of the CPU makes it the only viable approach.

Paging To avoid the cost of swapping entire processes between disk and RAM, most computer systems
today use a system called virtual memory (also called paging) for allocating memory to processes. In this
system, the CPU works with a “virtual address space,” which is divided into small pieces called pages, of
typically one to four kilobytes. The CPU uses a page table, which says for each page whether the page is
located in RAM and, if so, the address where it starts.

For example, suppose we have a system with four kilobytes of RAM, and we want eight kilobytes of
virtual memory.

6.3 Processes 69

0

1

2

3

4

5

6

7

1

2

3

0
1
2
3
4
5
6
7

1

3

2

RAM

page frames

page table

disk

 pages

The system would allocate eight kilobytes on disk to store the pages, and it would divide memory into a
page table and three separate page frames in RAM that can each potentially hold a single page of memory.
In this example, pages 0, 2, and 4 are located in page frames 1, 3, and 2 of RAM. You can see in the page
table (located in the first kilobyte of RAM) that it says that page 0 is in frame 1, page 1 is not in any frame,
page 2 is in frame 3, and so on.

When a program asks to load memory from an address, the CPU determines which page contains the
address, and the CPU refers to the page table (in RAM) to determine whether that page is in RAM. If so,
then the page table also says which page frame contains the memory, and the CPU can look within that
frame to find the data requested by the program. If the page table indicates that the page is not in RAM, then
the CPU generates a page fault, which is a signal for the the operating system to load the page into some
page frame. The operating system will load the page and update the page table to reflect that the requested
page is in the frame and that the page previously in that frame is no longer in RAM.

The advantage of virtual memory is that it only needs to keep the memory that is currently useful in RAM
at any time. Processes frequently request large amounts of memory, but they use the memory unfrequently;
for example, many Web browsers can play sounds from a Web page, and the code to play these sounds
takes up some of the Web browser’s memory, but this code lies unused when the user is viewing pages
with no accompanying sound. With swapping, this unused code would be copied from disk each time the
Web browser is swapped into memory, even though that memory may never be used before the next context
switch; with paging, it would only be loaded when it is needed.

Another major advantage is that virtual memory dramatically reduces the need to worry about the
amount of RAM in a computer. The computer will not refuse to run processes just because the computer
doesn’t have enough RAM to fit it into memory; the operating system only needs to be able to fit the process
into the virtual memory space, which is vast enough to be essentially infinite.

This does not mean, however, that RAM is irrelevant. If you have too little RAM to store the pages that
are frequently needed by the current processes, then the computer will generate frequent page faults. People
call such heavy swapping of pages page thrashing; when it is happening, you can often hear the noise of
the hard drive being accessed continuously even though nobody is opening or closing files, and you will
feel the system going dramatically slower as it repeatedly retrieves data from disk that ought to be in RAM.
Page thrashing indicates that the computer would be going much faster if it had more RAM, or if the current
processes needed less memory.

70 Chapter 6. The operating system

Chapter 7

Artificial intelligence

Although artificial intelligence research dates from the dawn of computer science, its goals are so ambitious
that it still has far to go. We begin this chapter by exploring the techniques lying behind computer game
players. Then we will examine philosophical thought regarding artificial intelligence, and we’ll look at some
attempts at writing programs that learn which are inspired by the biology of the human brain.

7.1 Playing games

The motivation behind game-playing research is much more serious than it sounds. The primary goal is
to have computers adapt and plan, so that they can handle serious tasks like driving a car or managing a
production line. Game-playing as a topic of study came about because it was fun, manageable, but somewhat
beyond current technology. For similar reasons, some robotics researchers today concentrate on creating
robots to juggle — not because juggling is a useful task, but because it requires dexterity and quick thinking
that robots need but currently lack.

Classical game-playing techniques work for a variety of games with certain common characteristics.
We assume that the game involves two players alternating turns. We assume that both players always know
everything about the current state of the game. (This is not true for many card games, for example, because
a player does not know the other’s hand.) And we assume that the number of moves on each turn is limited.
These restrictions encompass many games, including tic-tac-toe, Connect-4, Othello, checkers, chess, and
go. Except for go, the techniques covered in this chapter work well for all of the games just listed.

In this chapter we look at the simplest of these, tic-tac-toe. In case your childhood somehow lacked
tic-tac-toe, let us review the rules. We start with a � � � board, all blank.

It is X’s turn first, and X can place his mark in any of the nine blanks. Then O places her mark in one of the
eight remaining blanks. In response X has seven choices. In this way the players alternate turns until one of
the players has three marks along a horizontal, vertical, or diagonal line (thus winning the game), or until
the board becomes filled (this is a tie if neither player has won).

One approach to writing a tic-tac-toe program is to simply enumerate the situations that may occur and
what the computer should do in each case. For example, if the computer is O, and X’s first move is in a
corner, then O should play in the center. If X’s first move is in the center, O should play in a corner. And
so on. This approach suffers from two major problems. First, while such a list is feasible for a simple game
like tic-tac-toe, it is not for more complex games, which have too many possibilities to each be individually

72 Chapter 7. Artificial intelligence

X’s turn

O’s turn

X’s turn

X O O
X
O X

(�)

X O O
X X
O X

(�)

X O O
X X
O X

(�)

X O O
X
O X X

(�)

X O O
X X O
O X

(�)

X O O
X X
O X O

(�)

X O O
X O X
O X

(�)

X O O
X X
O X O

(�)

X O O
X O
O X X

(�)

X O O
X O
O X X

(�)

X O O
X X O
O X X

(�)

X O O
X X X
O X O

(�)

X O O
X X X
O X O

(�)

X O O
X X O
O X X

(�)

� � � � � � � �

��������

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

Figure 7.1: Evaluating a board.

considered by a human. Just as serious, a program playing according to a programmer-provided list will
never play any better than the programmer; it’s hard to see how such an approach demonstrates intelligence.

7.1.1 Game tree search

A more general approach to is have the computer determine how to move by evaluating choices on its own.
Say the current board is

X O O
X
O X

and the computer, playing X, must choose a move. To do this, the computer can consider each of the three
possible next boards and consider which is most appealing.

X O O
X X
O X

X O O
X X
O X

X O O
X
O X X

To determine which board is best, the computer can evaluate each one by examining possible moves from it.
And to evaluate these resulting boards, the computer can consider the possible moves from them. Essentially,
the computer explores all possible futures, which we can picture with a diagram called a game tree, as in
Figure 7.1.

The parenthesized numbers in Figure 7.1 indicate the “value” determined for each board: We use � for
a tie, � for a guaranteed win for X, and 	 � for a guaranteed win for O. At the bottom, when a final board is
reached, the value of the board is the outcome for that board: In the figure, the bottom left board is � because

7.1 Playing games 73

X’s turn

O’s turn

O X
O

X O X
(�)

�

O X X
O

X O X
(�)

O X
X O
X O X

(�)

O X
O X

X O X
(�)

�

O X X
O O
X O X

(�)

O X X
O O

X O X
(�)

O X O
X O
X O X

(�)

O X
X O O
X O X

(�)

O X O
O X

X O X
(�)

O X
O O X
X O X

(�)

�

� � � � � � � �

��������

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

Figure 7.2: Using heuristics to evaluate a board.

X has completed the diagonal. For other boards, the value is the best of the choices for the current player.
For the top board, we have three choices: a win for X, a win for O, or a win for O. It is X’s turn, so X would
choose the win for X; hence the board’s value is � , and X should move in the board’s center.

Evaluating such a tree is called the minimax search algorithm, since X chooses the maximum of its
childrens’ values and O chooses the minimum.

7.1.2 Heuristics

The problem with minimax search is that it takes a lot of time. Tic-tac-toe games, which last at most
�

moves, have manageable game trees. But a chess game may last more than � � moves; the game tree is well
beyond the total computing capacity of the world.

The solution is simple. We search only to a certain depth of the tree. When we see a board at the depth
that is not in a final state, we apply a heuristic function to estimate the board’s value. The heuristic function
is a function written by the programmer that tells roughly how good the board is.

In tic-tac-toe, a simple heuristic function may calculate the difference of the number of possible wins
for X and the number of possible wins for O, where a possible win is a row, column, or diagonal with none
of the opponent’s pieces. The board

O X
X O
X O X

has one possible win for X (the right column) and no possible wins for O; its heuristic value would be � . We
should also make the value of guaranteed wins more extreme (� �

�
and 	 � � � , say) to indicate how sure we

are of them.
With such a heuristic function defined, we can evaluate a board by going to a certain depth and using

the heuristic function to evaluate the boards at the bottom depth that are not final. We use the same minimax
procedure for boards above the maximum depth. Figure 7.2 illustrates an example going to a depth of � . In
this example, X would decide for either the second or third choices.

74 Chapter 7. Artificial intelligence

7.1.3 Alpha-beta search

Heuristics coupled with fixed-depth searching allow reasonably good game-playing programs. To improve
performance, however, we can look for any unnecessary computation. One particularly interesting enhance-
ment, which most high-quality game-playing programs use, is called alpha-beta search. � This technique
allows the computer to skip over some boards in its computation without sacrificing the correctness of its
result. That is, we can observe that some of the game tree’s results are irrelevant before we reach it, and this
can allow us to skip over those portions. This reduced computational cost allows a game-playing program
to search to a greater depth.

Figure 7.2 provides an example where this applies. Call the right-most board in the bottom level
�

, its
parent � , and the top of the tree � . Notice that, no matter what the value of

�
is, the value of � will be at

most � , since O will choose the minimum of its children’s values and � already knows that the first choice
gives � . Since at � X already knows it can guarantee � by choosing the middle route, the exact value of �
does not matter. Through this reasoning, then, we can avoid evaluating

�
.

In this case we would avoid evaluating a single board — not so impressive. But the reasoning can help
tremendously for larger games, almost doubling the depth that can be handled within the time limit.

7.1.4 Summary

Alpha-beta search is very close to what the best game programs use. The programs do, however, have
some additional enhancements. For example, a good chess program will have a large list describing specific
moves and responses for the beginning of the game. It may also vary the search depth based on how good
the board looks, rather than going to a fixed depth. But aside from such minor enhancements, the technique
is not much more sophisticated than alpha-beta search. The primary difference between programs is in the
sophistication of the heuristic function.

Unfortunately, although these techniques have proven very effective for playing games, they do not
generalize well to other planning tasks, where the world is much larger than a few pieces on a board and
actions sometimes fail to produce the desired result. (Juggling is an example: You can’t predict exactly
where something tossed into the air will land, because the effects of rotation and wind currents are too
complex.) These real-world problems are much harder. Researchers are currently addressing them, but a
long time will pass before they might develop solutions to such problems. Game-playing is just a first step.

7.2 Nature of intelligence

Philosophically, the game playing techniques are not very satisfying. Can one really say that a computer us-
ing exhaustive search is displaying any intelligence? While major chess computers search through millions
of boards for each play, a human grandmaster searches through merely hundreds of moves and still performs
as well. One cannot accurately say that a computer is actually reasoning as a human does.

7.2.1 Turing test

Alan Turing, a British mathematician working with the first computers back in the 1940’s, struggled with
this question of what constitutes artificial intellegence. Eventually he proposed the following way of testing
whether an entity was intelligent.

�
The name alpha-beta search is purely historical. In early descriptions of the algorithm, these two Greek letters were important

variables.

7.2 Nature of intelligence 75

A
C

B

To see if a computer (
�

) is intelligent, we place it and a human (�) behind a screen, each
connected via a communication wire to a human tester (�) in front. � asks questions of � and�

in an attempt to determine which is the human and which is the computer. If � can’t reliably
tell which of � and

�
is a human, then

�
must be intelligent.

This is called the Turing test. Many accept this aim as the ultimate AI goal.

When the conversation is restricted to the domain of game playing, computers appear close to passing
the Turing test when restricted to games alone. After playing a historic match with a chess computer in 1996,
world chess champion Garry Kasparov said of his opponent, “I could feel — I could smell — a new kind of
intelligence across the table.” Although he won the series then, he lost to an improved version the next year.
Yet computers have not completed even this reduced version of the Turing test: Kasparov maintains that the
computer has a distinctive style of play, and this indicates that the champion computer would not pass the
Turing test, if only because it plays too well.

The general Turing test, though, is a much more difficult goal. It’s not something that we’re likely to
reach soon, but it is something that indicates how we know when we’re there.

7.2.2 Searle’s Chinese Room experiment

Some people disagree that the Turing test is a good way to evaluate artificial intelligence. It’s somewhat
irritating that the Turing test is so output-oriented, they say: That computer could be doing anything, and
we’d be saying that it is intelligent.

Such is the stance taken by philosopher John Searle in 1980. Searle proposed the following thought
experiment called the Chinese room experiment to illustrate his stance: Suppose that everybody commu-
nicates via Chinese, and that the human behind the screen (�) doesn’t know any Chinese. In principle,
� can still appear intelligent, simply by having a vast phrasebook listing each possible input with some
English instructions of how to respond, including a corresponding Chinese-symbol output. The book could
omit a translation of what the Chinese means, so that � doesn’t understand what is going on. Even so, if the
phrasebook is vast enough, then � will appear intelligent to � . But if � has no idea of what is happening,
Searle asks, can we say that � is behaving intelligently? (The practicality of such a phrasebook is beside
the point. Searle is trying to illustrate the test’s shortcoming in principle.)

Searle is saying that the Turing test is flawed — intelligence cannot be defined as simply appearing to be
intelligent, however convenient that may be to a scientist. To be intelligent, something must actually work
intelligently. We cannot define intelligence functionally; the method also matters.

Searle’s argument is not universally accepted, but it stands as a credible argument against the Turing
test.

76 Chapter 7. Artificial intelligence

7.2.3 Symbolic versus connectionist AI

Searle’s problems with the Turing test bears some similarity to a long-standing debate within the artificial
intelligence community, a split between those advocating symbolic AI and those advocating connectionist
AI. The symbolic AI camp contends that the best way toward intelligence is to achieve behavior that appears
intelligent, by any means possible. And the easiest programs to write are those that manipulate symbols
(and thus they take the name symbolists). The minimax search technique for game playing is a symbolist’s
technique: It is a no-holds-barred approach to playing games.

Connectionists assert that this technique is flawed — although you may succeed on some simple prob-
lems, they say, such a program will never exceed the specific algorithms plugged into it. The program will
always be brittle, breaking as soon as we move away from the restricted problem that the program was de-
signed to solve. Instead, connectionists argue, our work on AI should focus on programs that resemble how
the human brain works.

One of the arguments of connectionists is that the human brain does not resemble symbolic AI at all, so
it’s difficult to see how symbolic programs are solid steps toward intelligence. They might point to studies of
human chess grandmasters, who can play dozens of simultaneous timed games with many different people,
winning all of the games. Obviously, though beginners might play by searching through a variety of pos-
sible moves, human chess mastery involves something different than becoming more efficient at searching
through moves. When we work on the minimax search technique, which relies solely on evaluating vast
numbers of possible moves, we’re chasing up the wrong tree.

Let’s review how the brain works. Researchers don’t understand it entirely, but they’ve done enough
experimentation to understand the simplest pieces, which are simple cells called neurons. Each neuron
has several dendrites, connected to other neurons via connections called synapses. Other neurons can send
electrochemical signals through the synapses through the dendrites. Occasionally, the signals may become
so intense that the neuron becomes excited and sends its own electrochemical signals down its axon, which
are relayed through synapses to the dendrites of other neurons.

The connectionists’ idea is to simulate the human brain within the computer. (They are called connec-
tionists because the systems they develop rely on the connections between “neurons.”) Since the human
brain is a mechanical system, they argue, this plan can only result in success. Symbolists don’t disagree
with them; they simply feel that this is the difficult road to AI, with little room for intermediate success
along the way.

Incidentally, Searle buys into none of this. He certainly does not agree with the symbolists but neither
does he accept the connectionists’ position. In fact, Searle argues (outside his Chinese room experiment)
that AI is impossible. Other philosophers, too, counter that AI researchers have no chance of success. There
are a variety of arguments that various philosophers propose for AI’s impossibility. Some arguments are
based on the assertion that AI requires a materialist view of humanity, where human behavior is understood
entirely as a physical phenomenon. Philosophers who reject this materialist view (believing instead in a
soul-like entity that affects humans’ behavior) thus often reject the possibility of true artificial intelligence.
AI advocates tend to have a materialist view of humanity, discounting the possibility that humans may have
some nonmaterial being.

There are also some philosophers who accept the materialist view, but they still argue against the possi-
bility of artificial intelligence. For example, a philosopher might argue that computers can’t simulate reality
perfectly — simulating quantum mechanics perfectly, for example, is seemingly impossible for a computer,
but conceivably the human brain’s behavior may depend on the intricacies of quantum mechanics.

7.3 Neural networks 77

7.3 Neural networks

To get a better idea of what connectionist AI is about, we’ll look at the perceptron, a specific learning
device whose behavior is inspired by neurons, and we’ll glance at neural networks.

7.3.1 Perceptrons

You can think of a perceptron as looking like the following.

w3

w2

w1

w4

x4

x1

x2

x3

o

The perceptron takes a set of inputs similar to a neuron’s dendrites and it uses its “thoughts” (represented
by a weight for each individual dendrite) to generate an output sent along its axon. The pictured perceptron
takes four inputs, � � , � � , � � , and � � , and uses four weights � � , � � , � � , and � � to generate its output � . The
inputs and outputs will each be either 	 � and � . You can think of 	 � representing a FALSE value and �
representing a TRUE value.

How does a perceptron compute its output? It finds the weighted sum of the inputs

� � � � ��� � � � ��� � � � ��� � � � �
and it outputs � � � if this sum turns out to be positive, and � � 	 � otherwise.

For example, suppose that our perceptron’s job is to predict in the morning whether somebody will raise
a flag on the flagpole during the day. We might have four inputs represent answers to various questions.

1. Is it raining?

2. Is the temperature below freezing?

3. Is it a national holiday?

4. Is school in session?

If the answers to these questions are no, yes, no, and yes, then we would represent these answers to the
perceptron with

� 	 ���	��� 	 ���	��� . Suppose the current weights within the perceptron are
� 	 � � � �	��� � � � � � � .

Then the perceptron would compute

� 	 � � � � � � 	 � � � � � � ��� � � 	 � � ��� � � ��� � � �
Since this is positive, the perceptron would output 1, predicting that the flag will be raised today.

If somebody does raise the flag, then the perceptron was correct. When the perceptron is correct, it sees
no need to change its weights. But when it is wrong, the perceptron updates its weights according to the
following rules.

� If the correct answer is � , and the perceptron predicts 	 � , the weights update according to the formula

��� ����� ��� � ��� �

78 Chapter 7. Artificial intelligence

� If the correct answer is 	 � , and the perceptron predicts � , the weights update according to the formula

��� ����� 	 � � ��� �

In these formulas, � represents the learning rate. How big this number is affects how quickly the perceptron
adapts to inputs. You do not want the number too large, because otherwise the perceptron will fluctuate
wildly. We’ll use � � � for � .

Suppose we wake up the the next day and observe that it is not a national holiday, school is not in
session, and it is raining and above freezing. The perceptron would compute

� 	 � � � � ��� �
� � � 	 � � ��� � � 	 � � � � � � � � 	 � � � 	 � �
Thus, it would output 	 � , predicting that the flag will not be raised.

But when we actually look, we may find that the flag is up. So now the perceptron will have to adapt
its weights, and they will become

� 	 � � � � � � � � 	 � � ��� � � � � . Notice that these new weights mean that the
perceptron has improved based on what it has just seen: If it sees the same situation again, then it will
compute

� 	 � � � � � � � � � � � � 	 � � � � 	 � � � � � � 	 � � ��� � � � � 	 � � � 	 � � � �
whereas before it computed 	 � . This is closer to being positive, and if the perceptron sees the same situation
several times in a row, it would keep getting closer, until it eventually got the answer right.

7.3.2 Networks

A single perceptron can’t understand much on its own. The problem is that its prediction can only depend
on a particular way of combining its inputs (a linear combination), and usually things are more complicated
than that. the hope of connectionists is that we can arrange perceptrons in a form of network where the
axons of some perceptrons connect to the dendrites of others.

x

x

x

x

1

2

3

4

 o
B

C

A

D

Z

The inputs (� � through � �) are fed to a variety of perceptrons (� through
�

), and each of these perceptrons
say something about the inputs. These perceptrons’ outputs go into another perceptron (

�
), which combines

them into a single output for the entire network. The idea is that the intermediate perceptrons (� through�
) might end up computing useful combinations of facts about the inputs. For example, it might be that

perceptron
�

would learn to predict whether freezing rain is likely (that is, if it is raining and below freez-
ing), while � might learn to predict whether the person in charge feels like raising the flag is particularly
worthwhile (school is in session and it is a national holiday). The final perceptron (

�
) can then combine

these useful facts into a more sophisticated concept than possible with a single perceptron. (With just one
layer of hidden perceptrons separating the inputs from the final perceptron, this example network is still
pretty simple. Neural networks can use more complex designs, but researchers tend to concentrate more on
this simple design.)

The difficult part of a neural network is learning. Suppose the network predicts wrongly. Then we
are faced with the problem of which perceptron is to blame. We don’t necessarily want to penalize all

7.3 Neural networks 79

perceptrons, because some of them probably did the right thing. The perceptrons that should adapt are those
that made a mistake in their output, but determining which perceptrons erred is difficult. Researchers have
come up with an approach to determining this, but it’s too complicated for us to examine here.

7.3.3 Computational power

One might validly wonder: How complicated a concept can a neural network represent? After all, a single
perceptron, as it is defined here, is very limited in how it can combine inputs into an output. How much
additional power can a whole network represent?

It’s not too difficult to demonstrate that a neural network can compute anything a logic circuit can, if it
simply learns the proper combination of weights. The argument is relatively simple: We simply observe that
there is a setting of weights for a perceptron that makes it behave like an AND gate, and similarly a setting
corresponding to an OR gate, and another corresponding to a NOT gate. It follows, then, that if you give me
a circuit of AND, OR, and NOT gates, then I could give you a neural network that can represent the same
concept.

For example, suppose that we have a perceptron that takes four inputs, � � , � � , � � , and � � , and we want
it to compute the function � � � � (the AND of � � and � �). For this to work, we need our network to include
an input that is always 1 to go into each perceptron; thus, we’ll add another input � � , which is always 1.

x4

x3

x2

x1

o

1

w
w
w

w4

w

0

2

3

1

To make the perceptron compute this combination of inputs, we simply configure the weights appropriately.
For example, we might choose � �

� 	 � � � , � �
� � � � , � �

� � , � �
� � � � , and � �

� � . To verify that this
works, we tabulate how it behaves for the four possible variations on � � and � � and observe that it matches
the AND gate’s truth table.

� � � � computation output
	 � 	 � � 	 � � � � ��� ��� � � � � 	 � � ��� � ? ��� � � � � 	 � � ��� � ? � 	 � � � 	 �
	 � � � 	 � � � � ��� ��� � � � � 	 � � ��� � ? ��� � � � � ��� � ? � 	 � � � 	 �
� 	 � � 	 � � � � ��� ��� � � ��� � � � ? ��� � � � � 	 � � ��� � ? � 	 � � � 	 �
� � � 	 � � � � ��� ��� � � ��� ��� � ? ��� � � ��� ��� � ? � � � � �

Because we can do this similarly for OR and NOT gates, a neural network (where a constant 1 input
goes to each perceptron) can end up learning anything that can be represented by replacing the individual
perceptrons with AND, OR, and NOT gates instead.

7.3.4 Case study: TD-Gammon

Classical game playing techniques work well for most two-player games where no information is hidden.
But for a handful of such games, the variety of possible moves for each turn is so large that game tree
techniques break down. Among these games is backgammon. (The rules to backgammon aren’t important

80 Chapter 7. Artificial intelligence

to this discussion. Compared to other classical games, backgammon’s most unusual feature is that a player
rolls a pair of dice each turn, and the outcome of the roll determines the moves available.)

Researchers have put a lot of effort into backgammon using techniques based on minimax search. They
haven’t had much success with these techniques, though: The programs played at the level of human masters,
but they weren’t at the championship level. In 1991, a researcher named Tesauro finally made a breakthrough
with his program, TD-Gammon, which used a radical approach based on neural networks.

TD-Gammon incorporates a neural network that takes a variety of inputs representing some state of the
board and outputs a number saying how good the board is. When it is TD-Gammon’s turn, it asks its neural
network about the quality of the board after each possible move. Then TD-Gammon chooses the move that
gives the largest value.

Game playing presents new challenges to learning because of the delayed feedback: A player may
make a bad move, but the fact that it is bad would not be obvious until several moves later, when the
player loses. When the player loses, then the learner is faced with the challenge of determining which of the
moves is at fault. This blame-assignment problem is similar, but at a larger scale, than the blame-assignment
problem faced with the problem of blaming individual perceptrons for a network’s overall prediction. Again,
computer scientists have a complex solution to this (called temporal difference learning — hence the TD
in TD-Gammon’s name). Tesauro generated TD-Gammon’s neural network by using temporal difference
learning to train the network as it played itself through 1.5 million games.

After this, Tesauro stopped training the network and began testing it against people. He found that
TD-Gammon could easily beat any previous computer backgammon players, and it could even beat human
backgammon players. Since then, he has trained the network more and added a small minimax search
element to its move computation; the resulting version is competitive with world champions, much better
than was possible with only symbolic techniques.

The success of TD-Gammon, which appears to play games well without resorting to analyzing millions
of boards, is a welcome relief to those who are skeptical of the usefulness of symbolic techniques for
artificial intelligence. Researchers have tried to duplicate its success for other games (such as chess). These
efforts have not reached world champion levels, but most have learned to play their games at a competition
level.

Chapter 8

Language and computation

In the 1950’s, the American linguist Noam Chomsky considered the following question: What is the struc-
ture of language? His answer turns out to form much of the foundation of computer science. In this chapter,
we examine a part of this work.

8.1 Defining language

One of the first steps to exploring linguistic structure, Chomsky decided, is to define our terms. Chomsky
chose a mathematical definition: We define a language as a set of sequences chosen from some set of atoms.
For the English language, the set of atoms would be a dictionary of English words, and the language would
include such word sequences as the following.

this sequence contains five atoms
lend me your ears
what does this have to do with computer science

Though the language of all possible English sentences is quite large, it certainly does not include all possible
sequences of atoms in our set. For example, the sequence

rise orchid door love blue

would not be in our language. Each sequence in the language is called a sentence of the language.
This definition of language is mathematical, akin to defining a circle as the set of points equidistant

from a single point. Notice that it is general enough to allow for nontraditional languages, too, such as the
following three “languages.”

� Our atoms could be the letters a and b, and our language could be the set of words formed using the
same number of a’s as b’s. Sentences in this language include ba, abab, and abbaab.

� Our atoms could be the decimal digits, and our language could be the digit sequences which represent
multiples of 5. Sentences in this language include 5, 115, and 10000000.

� Our atoms could be the decimal digits, and our language could be the digit sequences which represent
prime numbers. Sentences in this language include 31, 101, and 131071.

In analyzing linguistic structure, Chomsky came up with a variety of systems for describing a language,
which have proven especially important to computer science. In this chapter, we’ll study two of these
systems: context-free grammars and regular expressions.

82 Chapter 8. Language and computation

8.2 Context-free languages

One of the most important classes of language identified by Chomsky is the context-free language. (Chom-
sky called them phrase structure grammars, but computer scientists prefer their own term.)

8.2.1 Grammars

A context-free grammar is a formal definition of a language defined by some rules, each specifying how
a single symbol can be replaced by one of a selection of sequences of atoms and symbols. �

We’ll represent symbols using boldface letters and the atoms using italics. The following example rule
involves a single symbol S and a single atom a.

S � a S a � a

The arrow “ � ” and vertical bar “ � ” are for representing rules. Each rule has one arrow (“ � ”). On its left
side is the single symbol which can be replaced. The sequences with which the symbol can be replaced are
listed on the arrow’s right side, with vertical bars (“ � ”) separating the sequences. We can use this example
rule to perform the following replacements.

S � a S a replace S with the first alternative, a S a.
a S a � a a S a a replace S with the first alternative, a S a.

a a S a a � a a a a a replace S with the second alternative, a.

A derivation is a sequence of steps, beginning from the symbol S and ending in a sequence of only
atoms. Each step involves the application of a single rule from the grammar.

S � a S a
� a a S a a
� a a a a a

In each step, we have taken a symbol from the preceding line and replaced it with a sequence chosen from
the choices given in the grammar.

A little bit of thought will reveal that this grammar (consisting of just the one rule S � a S a � a) allows
us to derive any sentence consisting of an odd number of a’s. We would say that the grammar describes the
language of strings with an odd number of a’s.

Let’s look at a more complex example, which describes a small subset of the English language.

S � NP VP

NP � A N � PN

VP � V � V NP

A � a � the

N � cat � student � moon

PN � Spot � Carl

V � sees � knows

�
The term context-free refers to the fact that each rule describes how the symbol can be replaced, regardless of what surrounds

the symbol (its context). This contrasts it with the broader category of context-sensitive grammars, in which replacement rules can
be written that only apply in certain contexts.

8.2 Context-free languages 83

This context-free language consists of many rules and symbols. The symbols — S, NP, VP, A, N, PN, and
V — stand, respectively for sentence, noun phrase, verb phrase, article, noun, proper noun, and verb.

We can derive the sentence, “the cat sees Spot” using this context-free grammar.

S � NP VP

� A N VP

� A N V NP

� the N V NP

� the N sees NP

� the cat sees NP

� the cat sees PN

� the cat sees Spot

(When you perform a derivation, it’s not important which symbol you choose to replace in each step. Any
order of replacements is fine.)

In many cases, it’s more convenient to represent the steps leading to a sentence described by the grammar
using a diagram called a parse tree.

A N

sees

V

NP

NP

PN

Spot

VP

S

catthe

A parse tree has the starting symbol S at its root. Every node in the tree is either a symbol or an atom. Each
symbol node has children representing a sequence of items that can be derived from that symbol. Each atom
node has no children. To read the sentence described by the tree, we read through the atoms left to right
along the tree’s bottom fringe.

Other sentences included in this grammar include the following.

a cat knows
Spot sees the student
the moon knows Carl

Proving that each of these are described by the grammar is relatively easy: You just have to write a derivation
or draw a parse tree. It’s more difficult to argue that the following are not described by the grammar.

cat sees moon
Carl the student knows

8.2.2 Context-free languages

A context-free language is one that can be described by a context-free grammar. For example, we would
say that the language of decimal representations of multiples of 5 is context-free, as it can be represented by

84 Chapter 8. Language and computation

the following grammar.

S � N 0 � N 5

N � D N ���
D � 0 � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

(We use � to represent the empty sequence — this is just to make it clear that the space is intentionally
blank.)

Often the fact that a language is context-free isn’t immediately obvious. For example, consider the
language of strings of a’s and b’s containing the same number of each letter. Is this language context-
free? The way to prove it is to demonstrate a context-free grammar describing the language. Thinking of a
grammar for this language isn’t so easy. Here, though, is a solution.

S � a S b S � b S a S ���

To get a feel for how this grammar works, we look at we can derive the string aabbba using this grammar.

S � a S b S

� a a S b b S

� a a b b S

� a a b b b S a

� a a b b b a

A single example isn’t enough to convince ourselves that this grammar works, however: We need an ar-
gument that our grammar describes the language. In this case, the argument proceeds by noting that if the
string begins with an a then there must be some b so that there are the same number of a’s and b’s between
the two and there are the same number of a’s and b’s following the b. A similar argument applies if the
string begins with a b. We’ll skip over the details of this argument.

Now consider the language of strings of a’s, b’s, and c’s, with the same number of each. Is this context-
free? To test this, we can look for a context-free grammar describing the language. In this case, however, we
won’t be successful. There is a mathematical proof that no context-free grammar exists for this language,
but we won’t look at it here.

8.2.3 Practical languages

We can now apply our understanding of context-free languages to the complex languages that people use.

Natural languages Chomsky and other linguists are interested in human languages, so the question they
want to answer is: Are human languages context-free? Chomsky and most of his fellow American linguists
naturally turned to studying English. They have written thousands of rules in an attempt to describe English
with a context-free grammar, but no grammar has completely described English yet. Frustrated with this
difficulty, they have also tried to look for a proof that it is impossible, with no success there, either.

Other languages, however, have yielded more success. For example, researcehrs have discovered that
some dialects of Swiss-German are not context-free. In these dialects, speakers say sentence like

Claudia watched Helmut let Eva help Hans make Ulrike work.

with the following word order instead. (Of course, they use Swiss-German words instead!)

8.2 Context-free languages 85

Claudia Helmut Eva Hans Ulrike watched let help make work.

The verbs in this sequence are in the same order as the nouns to which they apply. Swiss-German includes
verb inflections, and each verb inflection must match with its corresponding noun, just as English requires
that a verb must be a singular verb if its subject is singular.

To prove that this system isn’t context-free, researchers rely on its similarity to an artificial language of
strings with a’s and b’s of the form � �

, where � and
�

are identical. There is a mathematical proof that
this artificial language is not context-free, and the proof extends to Swiss-German also.

There are very few languages that researchers know are not context-free, but their existence demonstrates
that the human brain can invent and handle such complex languages. This fact, coupled with the tremendous
difficulty of accommodating all of the rules of English into a single context-free grammar, leads many
researchers to believe that English is not context-free either.

Programming languages On the other hand, programming language designers intentionally design their
languages so that programmers can write compilers to interpret the language. One consequence is that
programming languages tend to be context-free (or very close to it). Indeed, compilers are usually developed
based on the context-free grammar for their language.

As an example, the following is a grammar for a small subset of Java.

S � Type main (Type Ident) { Stmts }

Stmts � Stmt Stmts ���
Stmt � Type Ident = Expr ; � Expr ; � while (Expr) Stmt � { Stmts }

Expr � Expr � Expr � Expr 	 Expr � Ident � Expr � Ident � Expr � Ident � Num

Type � String � int � void � Type []

Ident � x � y � z � main

Num � 0 � 1 � 2 � 3

Consider the following Java fragment.

void main(String[] args) {
int y = 1;
int x = 4;
while(x > 0) {

x = x - 1;
y = y + y;

}
}

This fragment is a sentence generated by our grammar, as illustrated by the parse tree of Figure 8.1. Of
course, this grammar covers a small piece of Java. The grammar for all of Java has hundreds of rules.
But such a grammar has been written, and the compiler uses this grammar to break each program into its
component parts.

Syntax and semantics Throughout this discussion, the distinction between syntax and semantics is im-
portant. Syntax refers to the structure of a language, while semantics refers to the language’s meaning.
Context-free grammars only describe a language’s syntax. Semantics is another story entirely.

The line separating syntax and semantics is somewhat fuzzy with natural languages. For example,
English has a rule that the gender of a pronoun should match the gender of its antecedent. It would be
improper for me to say, “Alice watches himself,” assuming Alice is female. Most linguists would argue that
this is a matter of semantics, as it requires knowledge of the meaning of Alice. They would argue, however,

86 Chapter 8. Language and computation

=

Stmt

TypeIdent Expr ;

Numint y

1

=

Stmt

TypeIdent Expr ;

Num

3

int x

Ident Expr ;

x

Stmt

Expr Expr

Ident Num

1x

−

=

Type TypeIdent (Ident { Stmts })

[]Type argsmainvoid

String

S

Stmts

ε

Stmts

Stmts

ε

Stmts

Expr Expr>

Ident Num

0x

Expr)(while

Stmts

Stmts{ }

Stmt

Stmt

Ident Expr ;

Stmt

Expr Expr

Ident

=

y

y y

+

Ident

Figure 8.1: Parse tree representing a Java program.

that the issue of subject-verb agreement is a syntactic issue. (An example where the subject and verb do not
agree is “The hobbits watches me”: Since hobbits is plural, the verb should be watch.)

For programming languages, people generally categorize issues surrounding the generation of a parse
tree as syntactic, while others are semantic. The rule that each variable declaration must end in a semicolon,
however, is a syntactic rule.

The process of taking a program and discerning its structure is called parsing. Thus, you will sometimes
see a compiler complain about a “parse error.” For compilers built around a context-free grammar, this
indicates that your program doesn’t fit into the language described by its grammar.

8.3 Regular languages

Chomsky identified another class of languages that has also proven useful in the context of computer science:
the class of regular languages.

8.3.1 Regular expressions

A regular expression is a succinct representation of a language where we use an expression built up of
atoms and operators. The simplest regular expression contains a single atom, which represents a language
consisting of a string holding that atom only. For example, the regular expression a represents the language�
a � . (This book uses a boldface typewriter font to distinguish regular expressions from individual sentences

in the languages they represent.)
Larger regular expressions can be built using one of three possible operators. Arithmetic has operators

like � and � . These operators take two numbers and generate a different number. Similarly, the regular
expression operators take two languages (described using smaller regular expressions) and generate a new
language.

8.3 Regular languages 87

The union operator The vertical bar (“ � ”) is the simplest operator, which we pronounce or. It means to
unite two languages together. For example, the regular expression a|b is the combination of the two regular
expressions a �

�
a � and b �

�
b � , which gives the language

�
a � b � .

The catenation operator When we write one regular expression after another, as in � � , it represents the
language of all strings composed of a string from � followed by a string from � . To illustrate, we look at
some examples using the union operator and the catenation operator.

ab represents any string chosen from a �
�
a � followed by any string from b �

�
b � . There is only one

choice from each language, so the only possible result is ab. Thus the expression ab represents the
language

�
ab � .

b|ca represents either a string chosen from b �
�
b � or a string chosen from ca �

�
ca � . This union gives

us the language
�
b � ca � .

This illustrates that the catenation operator has a higher precedence than the union operator, just as
multiplication precedes addition in arithmetic. You can use parentheses when you don’t like this
precedence order.

(b|c)a represents the catenation of any string from b|c �
�
b � c � with any string from a �

�
a � . There

are two possibilities for the first choice, and one for the second choice, giving a total of two possibili-
ties,

�
ba � ca � .

(b|c)a(b|d) is the catenation of any string chosen from (b|c)a �
�
ba � ca � with any string chosen

from b|d �
�
b � d � . This gives the language

�
bab � cab � bad � cad � .

The repetition operator Finally, we can create a regular expression by following a smaller regular ex-
pression with an asterisk (‘*’, also called a star). This represents any repetition of strings chosen from the
preceding regular expression’s language. Or, in other words, the expression � * represents the set of all
strings that can be separated into strings from � . Here are some examples.

a* allows us to repeat any number of choices from the language
�
a � . Thus, we get the following language. �

�
� � a � aa � aa � aaa � � � � �

ab* represents the catenation of any string chosen from a � �
a � and any string chosen from b* ��

�	� b � bb � bbb � � � � � . This gives us the language

�
a � ab � abb � abbb � � � � � �

This example illustrates that the repetition operator precedes the catenation operator (which we’ve
already seen precedes the union operator).

�
Again, we can use parentheses can designate a different

ordering.
�
Here, as with context-free languages, � represents an empty sequence.�
If this order of operations confuses you, think of the order of operations in arithmetic if we understand the union operator

as being equivalent to addition, the catenation operator as being equivalent to multiplication, and the repetition operator as being
equivalent to squaring something. To understand the regular expression a|bc*, then, we would translate it to the arithmetic
expression �������
	 � , which would be evaluated in the order �����
�����
	 ����� , and so the original regular expression’s order of
precedence is a|(b(c*)).

88 Chapter 8. Language and computation

a*b* represents the catenation of any string chosen from a* �
�
� � a � aa � aaa � � � � � . with any string chosen

from b* �
�
� � b � bb � bbb � � � � � . This union is

�
� � a � b � aa � ab � bb � aaa � aab � abb � bbb � � � � � �

In this language, the string abb comes from choosing a from the first set and bb from the second set;
the string aa in this language comes from catenating aa from the first set and the empty string from
the second set. The regular expression a*b* describes the language of all strings consisting of any
number of a’s followed by any number of b’s.

(a|ab)* Here, we can repeatedly choose from the language a|ab �
�
a � ab � , giving the language

�
� � a � ab � aa � aab � aba � abab � aaa � aaab � aaba � � � � � �

Notice that we don’t have to keep choosing the same string: We arrive at aaba by choosing a first,
then ab, then a. The regular expression describes the language of all strings of a’s and b’s where each
b has an a directly before it.

8.3.2 Regular languages

A regular language would be any language that can be described using a regular expression. We’ve already
seen several examples of regular languages starting from regular expressions.

The language of decimal representations of multiples of 5 is another language that is obviously regular,
since we can express the fact that we need a string of digits ending in a 0 or a 5 with the regular expression

(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)*(0 | 5) �

Sometimes it takes a bit of thinking to determine whether a language is regular. For example, you
shouldn’t expect the language of binary representations of multiples of three to be regular: A regular ex-
pression for it is simply not easy to discover. But, as it happens, the following regular expression does the
job, and so the language is regular.

(0|1(01*0)*1)*

I wouldn’t expect you to make sense of this expression, though.

8.3.3 Relationship to context-free languages

Now that we have the ability to classify a language as regular and/or context-free, it’s natural for us to ask:
How do these language classes relate? We’ve already seen that the language of multiples of 5 is both regular
and context-free, so apparently a language can be classified as both. But is it possible for a language to be
context-free but not regular? Can a language be regular but not context-free?

The answer to the first question is yes, some context-free languages are not regular. An example of such
a language is the set of strings of a’s and b’s with the same number of each. We’ve already seen that this is a
context-free language. It’s more difficult to prove that it’s not regular, and we won’t explore the proof now.

To the second question (“Can a language be regular but not context-free?”), the answer is no. This, we
will prove.

Theorem 3 Every regular language is context-free.

8.3 Regular languages 89

Proof: Every regular language can be described by a regular expression. We’ll see how we can build
up a context-free grammar that corresponds to any regular expression.

First, take the simplest possible regular expression � , where � is some single atom. Building a
context-free grammar for this expression is simple: It consists of the single rule S �
� � .

Now suppose we have a larger regular expression. There will be some final operator applied in
this expression, and this will be a catenation operator, repetition operator, or union operator. We’ll
see how to construct a grammar for each of these three cases.

The union operator Our regular expression is of the form � | � . We can build a context-free gram-
mar for � , beginning from some symbol S � , and for � , beginning from some symbol S � . To
get our context-free grammar for � | � , we combine these two smaller grammars and add a
new rule

S � | � � S � � S � �

The catenation operator Our regular expression is of the form � � . We combine the grammar for
� , beginning with the symbol S � , and for � , beginning with the symbol S � , and we add a new
rule

S ��� � S � S � �

The repetition operator If our regular expression is of the form � *, we take the grammar for � ,
beginning with the symbol S � , and we add the rule

S � * � � � S � S � *

As an example of how this might be applied to a regular expression, suppose we were to take the
regular expression (a|bc)*. The construction of this proof would build up the following context-
free grammar.

S(a|bc)* � � � Sa|bcS(a|bc)*
Sa|bc � Sa � Sbc

Sbc � SbSc
Sa � a

Sb � b

Sc � c

Since this grammar was built so that it describes the same language as the regular expression, the
original regular language must also be context-free.

Based on this theorem, we can construct a Venn diagram illustrating the relationship between our two
language classes, along with examples of languages contained in each region.

1
L

L
2

L
3

regular
languages

context−free
languages

all languages
�

� : the language of strings containing an even
number of a’s.

�

� : the language of strings containing the same
number of a’s and b’s.

�

� : the language of strings containing the same
number of a’s, b’s, and c’s.

90 Chapter 8. Language and computation

Conclusion

Chomsky’s investigation of classes of languages turns out to be surprisingly useful to the computer science
discipline. It lays the foundation for three very distinct areas of the field.

� It provides a structure for defining programming languages and building compilers for them.

� It is a starting point for constructing computer systems dealing with human language, such as grammar
checkers, speech and handwriting recognition programs, and Web search engines.

� It lays the theoretical foundations for studying computational power.

It is this last, most surprising connection between linguistics and computer science that we explore in the
next chapter.

Chapter 9

Computational models

Mathematicians, logicians, and computer scientists are interested in the inherent limits of computation. Is
there anything, they ask, that computers can’t compute? The first step to building such a mathematical
understanding of the question is to construct models of computation that are simple enough to allow for
formal arguments. In this chapter, we’ll look at two such computational models, the finite automaton and
the Turing machine.

9.1 Finite automata

The finite automaton (also called a finite state machine) is a diagram of circles, representing states, and
arrows, representing transitions between states. Here is an example. (The numbers within the circles are
not really part of the automaton; they are just for reference.)

0 1 2ab

a b a,b

Each arrow extending from one state to another represents a transition. There is also one arrow which points
into a state from nowhere; this indicates the initial state. States represented as double circles are called
accepting states.

The purpose of the automaton is to process strings to determine whether they are accepted or rejected.
This is not an obvious way of modeling computation — why not, for example, do something explicitly based
on arithmetic? But the simplicity and generality of the computation of determining whether a string is ac-
cepted makes it appropriate for our mathematical model. (It also allows for drawing parallels to Chomsky’s
language hierarchy.)

To determine whether the automaton accepts or rejects a string, it goes through the string left-to-right,
always occupying a state. We say that it accepts the string if, when it reaches the end, the automaton is in an
accepting state (a double circle).

We can diagram an automaton’s current situation as follows.

�
aabb

This represents that the automaton is processing the string aabb; the horizontal bar marks the character
at which the automaton is currently looking, with the number above representing the current state of the
automaton. This example illustrates an automaton in state 0 while looking at the first character of aabb.

92 Chapter 9. Computational models

As an example of an automaton at work, let’s step through an example: How does the following automa-
ton work given the string aabb?

0 1 2ab

a b a,b

�
aabb We start on the first letter, with our current state being state 0, since that’s where

the arrow with nothing at its beginning points. We look for the transition starting
at state 0 labeled with this current letter (a). Note that the arrow so labeled loops
back to state 0. Thus, when we move to the next letter, we’ll remain at state 0.

a
�
abb Now we’re on the second letter, which is also an a. As we move to the next letter,

we take the arrow labeled a from our current state 0. This arrow keeps us in state 0.

aa
�
bb Now we’re looking at a b from state 0. As we move to the next letter, we move

along the arrow from state 0 labeled b, which in this case takes us to state 1.

aab
�
b We now take the arrow labeled b from state 1, which keeps us in the same state.

aabb
�

We complete the string in state 1. Since this is an accepting state (as indicated by
the double circle), we would say that aabb is accepted by this automaton.

If you look at this particular automaton, you can see that it will be in state 0 as long as it looks at a’s at the
beginning of the string. Then, when it sees a b, it moves to state 1 and remains there as long as it sees b’s.
It moves to state 2 when it sees an a, and it will remain there thereafter. Since state 2 is its only only non-
accepting state, then, this automaton will reject only those strings that have a b followed by an a. Another
way of saying this is that this automaton accepts all strings in which all the a’s precede all the b’s.

Finite automata are extremely simple devices, which makes them quite handy for mathematical pur-
poses. But they’re also powerful enough to solve some moderately interesting problems. Let’s look at some
other examples of automata that solve particular problems.

Positive multiples of 2 Suppose we wanted an automaton for identifying all binary representations of
positive multiples of 2, such as

10 � 100 � 110 � 100 � 1010 � 1100 � � � � �
Essentially, we want the automaton to accept all strings that have at least one nonzero bit and end in a 0.
The following automaton implements this idea.

1

00 1

1

0

In this finite automaton, we will be in the left state until we have found a 1 in the input. Then we will be in
the center state whenever the last bit read is a 1 and in the right state when the last bit read is a 0.

Strings containing both an a and a b The following automaton identifies strings of a’s and b’s containing
at least one a and at least one b.

9.1 Finite automata 93

a

b

a

b
a

a,b

b

Understanding this automaton is slightly more difficult. To understand it, we can look at why we would be
in each state.

� We will be in the left state only at the beginning of the string.

� We will be in the top state when we have seen only a’s so far.

� We will be in the bottom state when we have seen only b’s so far.

� We will be in the right state when we have seen both an a and a b.

With this in mind, you can convince yourself that each transition represents what ought to be going on. For
example, if you’re in the top state (you’ve seen only a’s so far), and then you see a b, then you should go to
the right state. Based on this reasoning, we would expect an arrow labeled b from the top state to the right
state, and indeed we see that in the automaton.

9.1.1 Relationship to languages

Each finite automaton accepts some strings and rejects others. This set of strings that it accepts is identical
to the concept of language we saw in the previous chapter. This provides new opportunities for analysis:
In particular, how does the class of languages accepted by finite automata compare to the class of regular
languages and the class of context-free languages?

As it turns out, finite automata can accept exactly those languages that are regular. This can be proven
as a mathematical theorem, although its proof is complex enough that we won’t address it now.

Theorem 4 The class of regular languages is identical to the class of languages accepted by finite automata.
That is, each regular language is accepted by some finite automaton, and each finite automaton accepts a
language that is regular.

This equivalence is somewhat surprising: From a first examination, there isn’t any reason to suspect that
regular expressions and finite automata can both describe exactly the same languages.

9.1.2 Limitations

The equivalent power of regular expressions and finite automata means that we can’t build an automaton to
accept any language that can’t be described by a regular expression. Earlier, I mentioned that it’s impossible
to write a regular expression describing the language of strings with the same number of a’s as b’s. We
didn’t prove it, though, because proving this with regular expressions is rather difficult. Proving it with
finite automata, however, isn’t so bad, and in fact the proof is rather interesting, so we’ll examine it.

Theorem 5 No finite automaton accepts the language of strings containing only a’s and b’s where the
number of a’s equals the number of b’s.

94 Chapter 9. Computational models

Proof: The proof proceeds by contradiction. Suppose that somebody gives us an automaton that they
purport accepts the desired language; we’ll demonstrate a string on which their automaton gives the
wrong answer. Let � represent the number of states in this automaton we are given. Now see what
state the automaton reaches on a string containing 1 a, 2 a’s, 3 a’s,. . . , � a’s, � � � a’s. We’re trying
��� � different strings, and each one ends in one of the � states of the automaton. Thus, at least two
of these strings must end in the same state. Let � and � be two different numbers so that � a’s and �
a’s both end in the same state.

Now consider two strings: � a’s followed by � b’s, and � a’s followed by � b’s. When we feed
each string into the automaton, the automaton will end in the same state, since both strings get to the
same state after the a’s, and from there the automaton will proceed identically as it goes through the
remaining � b’s. Thus, the automaton will either accept both strings (if this same ending state is an
accepting state) or it will reject both strings (if it is not).

But the first of these strings contains the same number of a’s as b’s, and the other does not. Thus,
whether our automaton accepts both strings, or it rejects both strings, it will be wrong for one of the
two strings. Thus our automaton does not accept the language of strings with the same number of
a’s as b’s.

(By the way, this proof is a wonderful instance of the pigeonhole principle in mathematics, where we
assert that if we have � � � pigeons to fit into � pigeonholes, some pigeonhole must receive more than one
pigeon.)

9.1.3 Applications

It is not too far-fetched that we can regard a computer as a finite automaton: Each setting of bits in its
registers and memory would represent a different state. But this would yield a huge number of registers.
For HYMN, there are 35 bytes of memory and registers, each with 8 bits. A finite automaton representing
the CPU, then, would have � � ���

�
� ���

�
� states, each representing a certain combination of 0 and 1 values

among these bits. That’s a massive number — about � � � �
�
� . Thus if we were to build the finite automaton,

even with just one atom per state, it would exceed the known universe. (Physicists estimate that the universe
contains about � �
�� atoms.) But the CPU, if built, could easily fit in your fist. The finite automaton’s scale
is so large that its limitations simply aren’t that meaningful.

But this doesn’t mean that finite automata don’t have their uses. They’re useful for specifying very
simple circuits. Given a finite automaton, it’s not difficult to automatically construct a circuit that implements
the automaton.

In software, finite automata are quite useful for searching through text. In fact, most good text editors
and word processors have a search function where you can type a regular expression to specify the search.
The editor will build the corresponding finite automaton internally and use it to go through the text looking
for situations where the automaton gets into an accepting state. Even if the user types a simple string for
which to search (not a more complex regular expression), many text editors will build an automaton. For
example, if the user asked to search through a document for dada, the editor might build the following
automaton.

d a d a

? d

d
?

?

?
?

Here the leftmost state represents that the string doesn’t look like dada is happening any time soon. The
next state says that we have matched the first d of the word so far. The next state says we have matched the

9.2 Turing machines 95

first two letters. The next state says we have matched the first three. And the last state says we have matched
all four — which means that we have completed the string successfully. When the text editor reaches this
state, it’ll stop and show the user that it has found the string.

The advantage of this technique of building an automaton is that, as the editor goes through the text,
it only has one action to perform for each letter it examines. With a bit of preprocessing for building the
automaton, we can step through a large piece of text very efficiently to find a result.

9.2 Turing machines

Alan Turing, a logician working in the 1930’s, considered whether one could have a mechanical process for
proving mathematical theorems. To address this question, he came up with a model of computing called the
Turing machine today. Today, the Turing machine is still the most popular model of computation. (We saw
Alan Turing before, when we looked at the Turing test, but he was quite a bit older then: He invented the
Turing test in 1950, while he invented Turing machines in the mid-1930’s.)

9.2.1 Definition

As it computes, a Turing machine looks something like the following.

 tape

bba

 head
finite

automaton

At its heart, a Turing machine is a finite automaton. But the automaton has the capability to use a tape — a
one-dimensional string of characters on which the machine can read and write. The tape extends infinitely
in both directions. At any moment, the Turing machine’s head is examining a single square on the tape.

Computation in a Turing machine proceeds as follows.

1. The head looks at the character currently under its head, and it determines which transition it will take
based on the machine’s current state within its finite automaton.

2. The machine may optionally replace the character at the head’s current position with a different char-
acter.

3. The machine will move its head left or right to an adjacent square.

4. The machine changes its state according to the selected transition.

5. The machine repeats the process for its now-current state and head position.

To see whether a Turing machine accepts a string, we write the string onto the tape, with blanks every-
where else, and we place the head at the first character of the string. We start the Turing machine running.
When the Turing machine reahces a state where there is no arrow saying what to do next, we say that the

96 Chapter 9. Computational models

machine has halted. If it halts in an accepting state (a double circle), then the Turing machine has accepted
the string initially written on the tape. If, however, it never halts, or if it halts in a non-accepting state, then
we say that the Turing machine does not accept the string initially on the tape.

9.2.2 An example

The following picture diagrams the finite automaton that lies within the head of one Turing machine.

_ _
>

a

_ _

a,b

0 1 2

3 4 5

_

>

>

b

6

>

<
x

>
b,x

b,x
<

a,x
>

x,< >

<

x,<

a,b,x,_
>

<
a,b,x

In this diagram, the action for each transition is listed below the characters to which the transition applies.
The less-than (�) and greater-than (�) symbols represent which way the machine should move on the tape
as it goes to the next state. If there is a character preceding this symbol (like the x in “x, � ” on the first down
arrow), then this represents the character to write before making a move.

The easiest way to understand the Turing machine is to go through an example of it working. In Fig-
ure 9.1, we suppose that we give the string ba to the Turing machine illustrated above, and then we start it
up. It’s worth working through the steps to understand how the Turing machine processes the string. The
right-hand column summarizes the current situation for the machine at each step. For example, the fourth
row in this column says:

b
�
a

This represents that the tape still contains ba. The line above the a represents that the head is currently
pointing at the a, and the 1 above the line represents that the Turing machine is currently in the automaton’s
state 1.

Suppose that the machine starts with the string abb instead. Then it goes through the following situations.

�
abb

�
abb

�
abb

�
xbb

�
xbb x

�
bb

�
xxb

�
xxb

�
xxb x

�
xb xx

�
b xxb

�
xx
�
b xxb

�

� � �

Once it reaches this point, where it is in state 5 looking at a blank, it will continue going to the right and
finding more blanks. The machine will continue reading blanks, never reaching an accepting state, and thus
never accepting the string.

This machine, as it happens, accomplishes the task of recognizing strings containing the same number
of a’s as b’s. If you remember, Theorem 4, proved that finite automata cannot compute this language. But
Turing machines are slightly more flexible: Unlike finite automata, they have the ability to change the letters
on the tape and to move both left and right. This added ability allow Turing machines to compute a wider
variety of languages than finite automata, including this language.

To understand how the machine accomplishes the task, we need to understand the purpose of each state
in the automaton.

� State 0’s job is to move the machine back to the leftmost non-blank character in the string. Once it
finds a blank, it moves to the right into state 1.

9.2 Turing machines 97

The machine starts in the initial state. The letter at which it starts is arbitrary.
�
ba

The machine takes the transition from the current state (0) labeled with the letter
currently under the head (b). In this case, the transition loops back to state 0 and
says “ � ,” so the machine is now in state 0 looking at the letter to the left of the b,
which is a blank.

�
ba

The machine takes the transition labeled with a blank from the current state, which
brings it into state 1. Since the transition says “ � ,” the machine moves it head to
the right.

�
ba

The transition from state 1 labeled b goes to state 1 and says “ � .” b
�
a

The transition from state 1 labeled a goes to state 3 and says “x, � .” The machine
replaces the a with an x before moving left.

�
bx

The transition from state 3 labeled b goes to state 3 and says “ � .”
�
bx

The transition from state 3 labeled with a blank goes to state 4 and says “ � .”
�
bx

The transition from state 4 labeled b goes to state 0 and says “x, � .”
�
xx

The transition from state 0 labeled with a blank goes to state 1 and says “ � .”
�
xx

The transition from state 1 labeled x goes to state 1 and says “ � .” x
�
x

The transition from state 1 labeled x goes to state 1 and says “ � .” xx
�

The transition from state 1 labeled with a blank goes to state 2 and says “ � .” x
�
x

The transition from state 2 labeled x goes to state 2 and says “ � .”
�
xx

The transition from state 2 labeled x goes to state 2 and says “ � .”
�
xx

The transition from state 2 labeled with a blank goes to state 6 and says “ � .” Since
state 6 is an accepting state, the machine halts, accepting the initial string ba.

�

xx

Figure 9.1: The example Turing machine processing ba.

98 Chapter 9. Computational models

� State 1 is to go through the string (to the right) searching for an a. Once it finds it, it marks the a out
with an x and enters state 3. If it can’t find an a, it enters state 2.

� We reach state 2 if we were looking for an a in state 1 and couldn’t find any. Since there are no a’s
in the string, we hope that there are no b’s left. State 2 goes back through the string to verify that the
string contains only � ’s. If it finds none, and so reaches a blank, it enters state 6, the accepting state.
It it finds a b, we enter state 5, which simply loops infinitely to reject the string.

� When we reach state 3, we have just marked out an a. State 3 resets the machine back to the leftmost
character by repeatedly moving left until we hit a blank, whereupon we move right into state 4.

� In state 4, we go through the string looking for a b to match up with the a we marked out when we
moved from state 1 to 2. We go through the string, passing any a’s or x’s we find. When we reach a
b, we mark it out and go back to state 0 to look for another a-b pair. If we get all the way through the
string without reaching a b, we want to reject the string because it has no b corresponding to the a we
marked out, and hence we enter state 5.

9.2.3 Another example

Now let’s suppose that we want a Turing machine that determines whether a string begins with some number
of a’s, followed by the same number of b’s. For example, the language we want to handle icnludes the strings
ab, aabb, and aaabbb, but not abab or abba.

The first thing we need, as we consider how to build a Turing machine, is a strategy for how we might
possibly do this with a Turing machine. In this case, we know the string should start with an a. It would
make sense to delete it and immediately go to the other end to delete the matching b. Then we can come
back to the beginning again and repeat the process. This would slowly whittle down the string to nothing. If
we get to nothing with no problems, then the string must fit the desired description.

For example, if we begin with the string aaabbb, the process would work as follows.

aaabbb We begin here.
aabb We remove the first a and the last b
ab We remove the first a and the last b

We remove the first a and the last b

Since we end up with nothing, the original string must be good.
To convert this into a finite automaton, we decide on our states. Each state will be responsible for

handling a particular task.

1. Begin at the string’s beginning and remove the first a.

2. Move to the end of the string.

3. Delete the b at the end of the string.

4. Move back to the beginning of the string, returning to state 1.

5. If the string has been whittled away, accept the string.

Designing these states becomes more straightforward with practice.
With this description in hand, we can build our Turing machine.

9.2 Turing machines 99

_
_

_
a,b
>

>

a,b
<

<
_,>
a b

_,<

>

1

2 3

4

5

Now we need to test it.
First we’ll try a string the machine ought to accept: aabb.

The machine starts here.
�
aabb

The machine erases the first a and goes to state 2.
�
abb

...

The machine keeps going right as long as it’s looking at a’s and b’s. abb
�

The machine goes to the left and moves into state 3. It has now reached the end of
the string.

ab
�
b

The machine deletes the final b and moves left and enters state 4. a
�
b

...

The machine keeps going left as long as it’s looking at a’s and b’s.
�
ab

The machine sees a blank from state 4, so it moves to the right and enters state 1.
�
ab

The machine replaces the a with a blank and goes right.
�
b

The machine goes to the right. b
�

The machine goes to the left.
�
b

The machine replaces the b with a blank and goes left.
�

The machine goes right and enters state 1.
�

The machine goes right and enters state 5.

�

Since at this point, the machine is in state 5 looking at a blank, and there’s nothing to do in state 5 for a
blank, the machine stops. Because state 5 is an accepting state, we say that the machine accepted the input
aabb.

The process should reject a string that begin with more a’s than there are b’s at the end. Let’s see what
happens for aaabb.

aaabb We begin here.
aab We remove the first a and the last b
a We remove the first a and the last b

Now, we can remove the first a, putting us in state 2 of the machine, and state 2 will move to the first space
following the string, and then go back one and enter state 3. When it reaches state 3, though, there’s no place

100 Chapter 9. Computational models

to go: The head is looking at an empty square (in fact, the whole tape is empty), and there’s no transition
from state 3 saying what to do. So the machine stops. Since it stops in state 3, and state 3 isn’t an accepting
state, the machine has rejected the string.

If there are fewer a’s at the beginning than b’s at the end, the process should reject it, too.

aabbb We begin here.
abb We remove the first a and the last b
b We remove the first a and the last b

When we go to remove the first a now, we’ll be in state 1, and the head will be looking at a b. There’s no
arrow from this state saying what to do in state 1 for a b, and so the machine stops. State 1 isn’t an accepting
state, so the machine rejects the string.

Since the machine has passed all our tests, it seems that it works correctly.

9.2.4 Church-Turing thesis

Turing proposed the following thesis, which is called the Church-Turing thesis. (Alonzo Church gets
credit for this too, because he independently came up with the same idea. His version uses a different, less
accessible model that turns out to be equivalent to Turing machines.)

Every effectively computable language can be accepted by some Turing machine.

Turing is saying here that his computational model is as powerful as any other mechanical computational
model.

This isn’t the sort of thing that can be proven mathematically, because “effectively computable” is not
specific enough to be proven. But, over the years, some strong evidence has piled up that it is true: People
have thought of many other models of computation, and invariably they have found that Turing machines
are just as powerful.

To prove that one computational model is as powerful as a Turing machine, we use a proof technique
called a reduction, where we take an arbitrary machine from our model and demonstrate how to construct
a Turing machine that accepts the same language.

For example, suppose we wanted to show that Turing machines can compute everything that HYMN
can compute. To do this, we first need to establish that a system for HYMN programs to describe language.
Let’s imagine that we translate each atom of a language into a separate number, and then we can give a
sentence to a HYMN program by typing in the numbers representing the atoms of the sentence, followed
by 	 � . For example, if we’re dealing with a language of a’s and b’s, then we can assign 0 to a and 1 to b,
and then to query a program whether, say, aabb is in the language, we can type 0, then 0, then 1, then 1,
then 	 � . We’l suppose that the HYMN program is supposed to respond either with 0 (representing no) or 1
(representing yes).

Theorem 6 Turing machines are as powerful as HYMN programs.

Proof: Suppose you give me a program � for HYMN. I’ll show you how I can construct a Tur-
ing machine that accepts the same language as your program. Based on this construction, we can
conclude that the Turing machines are as powerful as HYMN programs.

Basically, we’ll just build a Turing machine that can simulate the HYMN system. When it starts,
our Turing machine will have the string in question on the tape. The first thing our machine will do
will be to write the following just after the string’s end.

;
� � � � � ; � ����� ; � � �

9.3 Extent of computability 101

These additional characters represent “storage space” for representing a HYMN computer as it exe-
cutes the program. The

� � � � � portion is a sequence of three 8-bit temporary spaces (initially all 0);
� � � � includes the three 8-bit register values; and � � � holds the machine language representation
of � (which, at 32 bytes long, and with a comma before each byte of memory, would take � � � �

places on the tape). We’ll call the three temporary spaces
�

� ,
�

� , and
�

� .
Building a Turing machine to move around on the tape is complicated. We’ll just look at the

fetch cycle to see what happens then. The machine will move through the tape to the portion of
� � � � representing PC and copy this into

�

� , placing a “caret” before the first location in the memory.
Placing a “caret” involves replacing the comma before the byte with a different character (such as
“ˆ”) temporarily. Then the machine will successively decrement the number in

�

� and move the
caret forward 9 bits, until

�

� holds 0. Then it copies the 8 bits following the caret (which is the
current instruction) into the portion of � ����� representing IR. The net result of all this computation is
that the current instruction to execute has been copied into the IR region of the tape.

Having our Turing machine simulate the execute cycle is much more complicated because of
the variety of instructions. But they, too, can be done in principle. We’ll consider just one, special
instruction: When it gets to executing a “STORE 31” instruction (for displaying the AC), the Turing
machine should go to the AC region of the tape and determine whether that region contains a 0 or a
1. The HYMN program was supposed to print a 0 if it rejected the string and a 1 if it accepted the
string. Thus, the Turing machine will likewise enter an accepting state if the AC region of the tape
contains a 1, and if that region contains a 0, the machine will enter a non-accepting state with no
arrows going out (and so the machine would reject the initial string).

The final Turing machine will have thousands of states, but the the size isn’t important: As long
as we can build a fixed-size Turing machine corresponding to any given HYMN program, we can
conclude that Turing machines can do anything that HYMN programs can do.

It’s very important to realize here that we’re saying nothing about efficiency. HYMN would run much
faster, largely because it can skip around within memory. Here, we’re only concerned with what the ma-
chines can perform, not how fast they can perform them. And Turing machines can perform anything that
the HYMN can.

What about the human brain? How does it relate to the Church-Turing thesis? A person who accepts the
Church-Turing thesis (as many people do) and who believes that AI is possible must agree that the human
brain can accomplish no more than a Turing machine can — that the human brain is essentially a very fancy
Turing machine.

9.3 Extent of computability

As it happens — though we will not examine a proof here — every context-free language is “Turing-
computable.” That is, for any context-free grammar, there is some Turing machine that accepts the same
language as that described by the grammar.

On the other hand, there are some Turing-computable languages that are not context-free. An example
of this is the language of strings of the form � �

, where � and
�

are identical. This language includes
such strings as aabaab, aa, and bbbabbba. This language is not context-free, but it isn’t difficult to build
a Turing machine to accept the language. Thus, though the set of context-free languages is a subset of
Turing-computable languages, the two sets are not identical.

With this in mind, we can extend the Venn diagram from Section 8.3.3.

102 Chapter 9. Computational models

1
L

L
2

L
3

regular
languages

context−free
languages

Turing−computable
languages

all languages L
4

�

� : language of strings containing an even num-
ber of a’s.

�

� : language of strings containing the same
number of a’s and b’s.

�

� : language of strings of the form � �
where

� and
�

are identical.
�

� : ???

We haven’t seen an example of a language like
�

� in the diagram, and this omission leaves us wondering
whether such a language exists. That is, is Turing’s model all-powerful in describing languages? Or are
there some languages that are not “Turing-computable”?

We’re going to get to that answer in a moment. But first, we’ll take a side tour exploring what computer
programs cannot do.

9.3.1 Halting problem

Suppose we define the following language.

The Java halting language is the set of strings of the form prog!input, where prog repre-
sents a Java program, and if I run prog and type input, then prog eventually stops (i.e., it doesn’t
enter an infinite loop).

Now, we can reasonably ask, is there a Java program that can identify strings in this language? That is, our
program would read in a string (of the form prog!input) from the user and then display either “yes” or “no”
depending on whether that string is in the Java halting language.

As it happens, we can prove that in fact writing a Java program that identifies the Java halting language
is impossible. The argument is interesting, and so we’ll look at it closely. (There’s nothing special about
Java in this proof — we could choose any good programming language, and the argument would still apply.)

Theorem 7 No Java program exists to identify strings in the Java halting language.

Proof: The proof proceeds by contradiction: Suppose there were such a Java program, which we’ll
call Halter. We’ll see how such a program leads to a contradiction.

The program given us would look something like the following.
public class Halter {

public static boolean isInLanguage(String x) {
...

}
}

That is, Halter contains some code that takes a string input and determines whether or not that
string is in the Java halting language.

Suppose we take this program and use it to compose a different program, called Breaker.
public class Breaker {

public static boolean isInLanguage(String x) {
... // this is taken verbatim from Halter

}

9.3 Extent of computability 103

public static void main(String[] args) {
String prog = readLine(); // read program from user
if(isInLanguage(prog + "!" + prog)) {

// if prog!prog is in language, go into infinite loop
while(true) { }

} else {
// if prog!prog isn’t in language, exit program
io.println("done");

}
}

}

This is a well-defined program, which would compile well. Now consider the following question:
What happens if we run Breaker, and when it reads a program from the user, we type Breaker
again?

The call to “isInLanguage(prog + "!" + prog)” will return either true or false.
Suppose it returns true — that is, it says that prog!prog is not in the language. Based on the
definition of our language, this response indicates that if we were to run prog (that is, Breaker)
and type prog’s code as input, then prog would eventually stop. But if you look at the code for
Breaker, you can see that this isn’t what actually happens: We ran Breaker and typed Breaker
as input, and we’re supposing that isInLanguage returns true, and so the program would go
into the if statement and enter an infinite loop. We can conclude, then, that the Halter program
would be wrong if its isInLanguagemethod responds with true.

So let’s suppose that isInLanguage returns false, a response that means prog!prog is in
the Java halting language. Based on the definition of this language, this indicates that if we were to
run prog (that is, Breaker) and type prog’s code as input, then prog would not stop. But when we
look at Breaker’s code to see what happens when isInLanguage returns false, we see that
what will actually happen is that the program prints, “done,” and it promptly stops. Thus, we can
conclude that the Halter program would be wrong if its isInLanguagemethod responds with
false.

We’ve trapped Halter into a quandary: We were able to work it into a situation where whatever
it says — yes or no — will be wrong. Thus, we can conclude that any program for the Java halting
problem will be wrong in at least some circumstances.

The fact that we can’t solve the halting problem has important implications: One consequence is that
there is no way that an operating system could be written to reliably terminate a program when it enters
an infinite loop. Such a feature would be nice, because the system could guarantee that the system would
never freeze. But such a feature would imply a solution to the halting problem, which we’ve just proven is
impossible to solve.

9.3.2 Turing machine impossibility

So we know that there are some things that computers can’t do. But this doesn’t immediately imply any-
thing about Turing machines. We have seen that Turing machines can do anything that computers can do
(Theorem 6), but this doesn’t apply the other way: Based on what we’ve seen so far, Turing machines might
be able to do some things that regular computers can’t. Maybe Turing mahcines could identify the Java
halting language.

In fact, in the 1936 paper describing his machines, Turing demonstrates that there are some languages
that Turing machines cannot compute. His argument proceeds similarly to the one we just examined for the
Java halting language: He gives an example of a particular language and then demonstrates how any Turing
machine constructed for that language can be broken.

104 Chapter 9. Computational models

Before we define the language Turing defined, we first need to observe that it’s possible to represent a
Turing machine as a string rather than as a diagram of circles and arrows. This string will use the charac-
ters used by the machine, plus four additional characters, which we’ll name 0, 1, comma, and semicolon.
Suppose that the machine has � states; we’ll name each state with a different binary number between 0
and � 	 � . To describe the machine completely, we must represent the initial state, the final states, and all
transitions. The format of our string will be as follows.

initial;finals;transitions

This consists of three parts, separated by semicolons.

� The initial portion is the binary name of the machine’s initial state.

� The final portion contains the binary names of the accepting states, separated by commas.

� The transitions portion contains a list of all transitions, separated by semicolons. Each transition is
represented as follows.

source,read,write,dir,dest

This has five parts, separated by commas.

– The name of the state from which the transition comes.

– A list of the characters to which the transition applies.

– A list of the characters that should be written to the tape for each possible character read. (If the
machine is to leave a character unchanged, read and write will be identical.)

– 1 if the machine should go right on the transition, 0 if it says to go left.

– The name of the state to which the transition points.

For example, suppose we want to describe the following machine as a string.

b
>

_
>

a,b,_
>

>
a

We’ll assign the name 0 to the initial state, 1 to the final state, and 10 to the nonterminating state. Then we
can make our string describing this machine.

0;1;

transitions� ��� �
0,a,a,1,1;0, , ,1,10;0,b,b,1,10;10,ab ,ab ,1,10

Now we can define the halting problem language.

The halting problem language includes all strings of the form M!x where � is a string
representation of a Turing machine, and if we write � on a tape and start � , then � does not
accept � .

For example, the string

0;1;0,a,a,1,1;0, , ,1,10;0,b,b,1,10;10,ab ,ab ,1,10!b

is in the language: The part of string before the exclamation point describes the machine

9.3 Extent of computability 105

b
>

_
>

a,b,_
>

>
a

and this machine does not accept b as an input (it loops infinitely). However, the following string is not in
this language, since the same machine accepts a as an input.

0;1;0,a,a,1,1;0, , ,1,10;0,b,b,1,10;10,ab ,ab ,1,10!a

Theorem 8 No Turing machine exists to solve the halting problem language.

Proof: The argument proceeds by contradiction. Suppose, he says, somebody gives us such a ma-
chine, called � . Then we can construct the following machine and call it � .

duplicate

tape
problem
halting

‘‘solution’’

(This is only a diagram of the machine. The boxes contain all the arrows and circles needed to define
a complete Turing machine.) This machine begins with a “duplicate tape” portion, which is simply
a sequence of states that replaces a tape containing the string � with a tape containing the string x!x.
Once this is done, this machine enters the initial state of the machine proposed as a solution to the
halting problem.

This machine � we just built is a normal Turing machine, and so we can represent it as a string.
Suppose we put this string representation of � down on the tape, and we start up � to see what
happens. Either � will eventually accept this input, or it won’t.

� Suppose it accepts this input. This means that � accepted A!A as an input. Thus, according
to � , � does not accept the string representation of � . But we were supposing that � accepts
the string it was given, which was a string representation of � . Hence � must be wrong.

� Suppose it rejects this input. This means that � did not accept A!A as an input. Thus, accord-
ing to � , � must accept the string representation of � . But we were supposing that � does
not accept the string it was given, which was a string representation of � . Hence � must be
wrong.

Either way, the proposed solution � is wrong, says Turing.
Thus, no matter what Turing machine anybody proposes for the halting problem language, the

machine will fail sometimes. It’s impossible to build a Turing machine that identifies this language.

106 Chapter 9. Computational models

Chapter 10

Conclusion

Throughout this course, we have seen a variety of models of computing, both practical and theoretical.

� Logic circuits allow us to design circuits to perform computation, including addition and counting (as
we saw in Chapter 4).

� Machine language (Chapter 5) is a simple technique for encoding computation in a sequence of bits.

� Programming languages, such as Java, are systems for describing computation in a format convenient
for humans.

� Neural networks (Section 7.3) can represent general computation.

� The Turing machine (Section 9.2) is a simple model of computing that, according to the Church-
Turing thesis, is general enough to cover all forms of computing.

To show that one model is as powerful as another, we use a proof technique called reduction: If we
want to show that � can do everything that � can, we only have to show that any construction within the �
system can be translated into the � system. Usually, this involves showing how computations in � can be
simulated on some � construction.

Theorem 6 (Section 9.2.4), in which we saw that Turing machines can do anything that HYMN programs
can do, illustrated exactly this technique: We showed how we could take a HYMN program and construct
a Turing machine to accomplish the same thing. Another example of a reduction was in Section 7.3, where
we saw that any logic circuit can be simulated on a neural network.

Some reductions are very practical. A Java compiler, for example, translates a program in Java into
machine language. This compiler is a proof that machine language programs can do anything that Java pro-
grams can. Similarly, the program Logisim (which is written in Java to simulate logic circuits) demonstrates
that Java programs can compute anything that logic circuits can.

Figure 10.1 diagrams some of the reductions between various computational models. Each arrow points
from one model to another that is just as powerful. You can see several cycles within the picture, and these
cycles mean that all the models contained in the cycle are equally powerful. The picture contains several
cycles:

Java � machine language � logic circuits � Java
Java � machine language � Turing machines � Java

Java � machine language � logic circuits � neural networks � Java

Despite their differences, then, all of these models are equally powerful.

108 Chapter 10. Conclusion

Turing

Java
machine

logicneural
networks circuits

language

machines
Theorem 6

CPU architecture
Logisim

Automaton
Simulator

software
network
neural

compiler

Section 7.3.3

Figure 10.1: Reductions between computational models.

You might wonder: Can we get any more power by having several machines running at the same time?
The answer turns out to be no. In fact, we saw this when we looked at operating systems in Chapter 6:
Modern operating systems end up simulating a computer system with multiple threads of computation, even
though the system may in fact have only one CPU. The same technique — where we run each computation
for a while, and then perform a context switch into another computation — extends to other models, too.

Through this class, then, we have seen many computational models, developed to serve different pur-
poses. Though they bear little resemblance to each other, they are in fact all computationally equivalent.
The Church-Turing thesis asserts that this level of computational power is as much as is possible.

So which model should we use in practice? This is a matter of evaluating the practical properties of the
model for the problem we have at hand. If you want to prove something about the extent of computation, the
simplicity of the Turing machine makes it ideal. But the Turing machine’s simplicity is exactly what makes
it horrid for developing large-scale software, for which high-level programming languages are better suited.

The discipline of computer science involves gaining a greater understanding of these models’ capa-
bilities, learning how to use them with maximum efficiency, and exploring the effects of computation on
humanity. Computer science includes perspectives drawn from many other disciplines, including mathe-
matics, engineering, philosophy, management, sociology, psychology, and many others. The appeal of the
subject is how it brings people of all these perspectives into one room, with one purpose, which is at once
both interesting and practical: to understand the potential of the concept of computation.

Index

addition
circuit, 33–35
two’s-complement, 21

address, 46
alpha-beta search, 74
ALU, 46
AND gate, 4
arithmetic logic unit, 46
artificial intelligence, 71–80
ASCII, 14
assembler, 51
assembly language, 51, 51–53
associative law, 7
atoms, 81

backgammon, 79
base 10, 14
base 2, 14
binary notation, 14
bit, 3
Boole, George, 6
Boolean algebra, 6, 6–7

laws, 7
Boolean expressions, 6

simplifying, 9–10
branch instructions, 50
bus, 45, 49
byte, 14

C, see high-level languages
call, 58
careers, 2
CDs, 30, 31
central processing unit, 5, 45
characters, 14
chess, 71
Chinese room experiment, 75
Chomsky, Noam, 81
Church, Alonzo, 100
Church-Turing thesis, 100, 100

circuit depth, 5
circuits, see logic circuits
clock, 38, 48
combinational circuit

design, 8–10
combinational circuits, 40
comment, 52
commutative law, 7
compatibility, 63
compiler, 57
compression, see data compression
computational power, 1
computer engineering, 1
computer science, 1
context switch, 65
context-free grammar, 82
context-free language, 83
control unit, 46
CPU, 45

D latch, 36, 37
D flip-flop, 38
data compression, 28–30
data representation, 13–32
decimal notation, 14
Deep Blue, 75
DeMorgan’s laws, 7
denormalized numbers, 25
derivation, 82
disk, 61–62
distributive law, 7
driver, 64
DVDs, 30

English, 84
excess, 25
exclusive-or, 34
exponent, 22

fetch-execute cycle, 48
Fibonacci sequence, 55

110 INDEX

file, 63
finite automaton, 41, 91
fixed-point representation, 22
flip-flop, 38
floating-point representation, 22
full adder, 34

game tree, 72
games, 71
gates, see logic gates
GIF format, 29
go, 71
goals of textbook, 2
grammar, 82

half adder, 33
halt, 96
halting problem language, 104
hard disk, 61–62
head, Turing machine, 95
heuristic function, 73
hexadecimal, 17
high-level languages, 57

grammar, 85
limits, 102

Horner’s method, 17
Horner, William, 17
HYMN, 45–53

assembly language, 51, 53
instructions, 47

I/O, 66
I/O wait queue, 66
IEEE standard, 25
image representation, 27–29
indirect addressing, 58
infinity, 27
input/output, 49
instruction format, 46
instructions

HYMN, 47
integer representation, 18–21

Java, see high-level languages
Java halting language, 102
jobs, 2
JPEG format, 29
jump instructions, 50

Kasparov, Garry, 75
keyboard, 14
kilobytes, 14

label, 52
language, 81
latch, 36
learning rate, 78
logic, 6
logic circuits, 3, 3–10

counter (4 bits), 39
D flip-flop, 38
D latch, 37
depth, 5
four-bit adder, 35
full adder, 35
half adder, 34
SR latch, 36
XOR, 34

logic gates, 3
AND, 4
delay, 5, 38
NOR, 36
NOT, 4
OR, 4
XOR, 34

lossy compression, 30

machine language, 51
management information systems, 1
mantissa, 22
memory, see RAM

circuit, 35–39
minimax search, 73
misconceptions

computer science, 1–2
MP3 format, 31
MPEG, 30

NaN, 27
negation

two’s-complement, 20–21
neural network, 78
neurons, 76
nonnumeric values, 27
NOR gate, 36
“not a number”, 27
NOT gate, 4

INDEX 111

octal, 17
op code, 46
operating system, 61, 62
OR gate, 4
overflow, 27

page fault, 69
page frames, 69
page table, 68
page thrashing, 69
pages, 68
paging, 68
parse tree, 83
parsing, 86
Pascal, see high-level languages
perceptron, 77
peripherals, 49, 61
phrase structure grammars, 82
pigeonhole principle, 94
pixels, 27
planning, 71
PNM format, 27–28
preemption, 64
process, 64
process table, 65
programming languages, 57
pseudo-ops, 52
pseudocode, 53
pulse, 48

RAM, 18, 45
random access memory, 45
ready queue, 66
reduction, 100, 107
register, 46
regular expression, 86
robotics, 71
rounding, 24
rules, grammar, 82
run-length encoding, 28

Searle, John, 75
semantics, 85
sentence, 81
sequential circuits, 40
Shih-Chieh, Chu, 17
sign-magnitude representation, 18
signed integer representation, 18–21
significand, 22

sound, 30–32
SR latch, 37
state transition diagram, 41
states, 91
subroutine, 58
sum of products, 8
sum of products technique, 8
swapping, 68
Swiss-German, 84
symbol, grammar, 82
syntax, 85
system call, 64

tape, 95
TD-Gammon, 79
Tesauro, Gerald, 79
tic-tac-toe, 71
time slice, 64
timing diagram, 38
transistors, 5
transitions, 91
trojan horse, 64
truth table, 5
Turing machine, 95
Turing test, 75
Turing, Alan, 95, 103
two’s-complement representation, 19

unsigned representation, 18

value representation, 13–14
video, 30
virtual machine, 62
virtual memory, 68

window, 63
words, 18

XOR gate, 34

112 INDEX

